
Fundamental	Programming	Principles:	
Variables	and	Data	Types	

Beyond	the	Mouse	
GEOS	436/636	

Jeff	Freymueller,	Sep	5,	2017	

“The	Uncomfortable	Truths	Well”,	
hQp://xkcd.com/568	(April	13,	2009)	

Today’s	Schedule	

•  How	does	computer	programming	work	
– What	is	a	programming	language?	
– What	is	a	program?	

•  Variables	and	Data	Types	
– How	do	we	store	values	of	different	kinds?	

•  Numbers	
•  Strings	of	text	
•  More	complicated	things	(like	images,	for	example)	

Definiaons	

•  A	programming	language	is	an	unambiguous	
araficial	language	that	is	made	up	of	a	set	of	
symbols	(vocabulary)	and	grammaacal	rules	
(syntax)	to	instruct	a	machine.	

•  A	program	is	a	set	of	instrucaons	in	one	or	
mulaple	programming	languages	that	specifies	
the	behavior	of	a	machine.	

•  Compila.on	or	interpreta.on	is	the	verificaaon	
of	a	program	and	its	translaaon	into	machine	
readable	instrucaons	of	a	specific	plaborm.	

What	Language	Does	the	CPU	
Understand?	

•  The	CPU	(Central	Processing	Unit)	actually	
understands	only	a	language	composed	enarely	of	
numbers,	like	this:	
–  “157	65530	22	77	854”	(this	is	a	made-up	example)	
–  This	means	“execute	instrucaon	#157	using	an	
argument	65530,	then	execute	instrucaon	#22,	then	
execute	instrucaon	#77	using	an	argument	854”	

–  The	language	definiaon	tells	the	machine	that	
instrucaon	#157	takes	one	argument,	but	#22	does	not.	

•  It	is	possible	for	a	person	to	write	code	in	this	
machine	language,	but	almost	nobody	does	it	any	
more	because	it	is	so	inconvenient.	

I	Actually	Did	This	

Programming	Languages	

•  Can	be	broken	into	two	large	families:	
•  Interpreted	languages.	An	interpreter	program	
takes	in	commands,	check	syntax	and	translates	
to	machine	language	at	runame	(e.g.,	Matlab,	
Unix	Shell)	

•  Compiled	languages.	Programs	are	translated	
and	saved	in	machine	language	by	a	compiler.	At	
runame	no	addiaonal	interpretaaon	is	necessary	
(e.g.,	FORTRAN,	C/C++).	
–  These	generally	run	much	faster	than	interpreted	
languages	

1.  Open	a	text	editor	(MATLAB	editor,	vi,	notepad,	Text	Wrangler,	…	not	MS	Word)	

2.  translate	your	(physical	or	mental)	flowchart	into	a	set	of	instrucaons	according	to	
the	rules	of	a	programming	language	

3.  test	your	program	for	syntacacal	correctness	(ask	the	interpreter/compiler)	
4.  if	errors,	fix	them	and	go	back	to	(3)	
5.  test	your	program	for	semanac	errors	(the	“fun”	part!)		
6.  if	errors,	fix	them	and	go	back	to	(3)	

Now,	How	Does	Programming	Work?	

Example:	Hello	World	

The	MATLAB	Editor	Helps	You	

The	MATLAB	Editor	Helps	You	

The	MATLAB	Editor	Helps	You	

What	is	a	Variable?	

•  Donald	Knuth:	A	quanaty	that	may	possess	
different	values	as	a	program	is	being	executed.	

•  Mehran	Sahami:	A	box	in	which	we	stuff	things	–	
i.e.	a	box	with	variable	content.	

•  Wikipedia:	User	defined	keyword	that	is	linked	to	
a	value	stored	in	computer’s	memory	(runame).	

•  The	concept	of	a	variable	consists	of:	
– Name	
–  Type	
–  Value	

Variables:	Name	
•  USE	MEANINGFUL	NAMES!	
•  Must	follow	programming	language	rules	
– MATLAB	variable	names	must	begin	with	a	leQer,	followed	
by	any	combinaaon	of	leQers,	digits,	and	underscores.	
MATLAB	disanguishes	between	uppercase	and	lowercase.	
No	reserved	keywords!	

•  USE	MEANINGFUL	NAMES,	i.e.	names	that	speak:	
‘lengthGlacier’	or	‘glacier_length’	NOT	NOT	
NOT	‘a’	–	avoid	ambiguity	

•  use	consistent	formaqng,	i.e.:	‘my_cool_var’	or	
‘myCoolVar’	–	this	is	easier	to	read	

•  a	gazillion	style	guides	exist	–	punchline:	use	
meaningful	names,	be	consistent	(that’s	hard	enough)!	

Variables:	Type	

•  What	is	a	type?	–	Think	of	sets	of	numbers	in	
math:	N,R,Z,	...The	type	refers	to	how	numbers	
are	being	represented	in	a	computer’s	memory,	
i.e.	which	bit	has	which	meaning,	and	how	many	
bits	are	necessary	

•  primiave,	built	in	types	–	for	MATLAB	e.g.:	
‘int32’,	‘double’,	‘boolean’	(important	for	
*printf funcaons)	

•  complex,	home	made	types	–	(arrays,)	structs,	
cell	arrays	(Matlab),	classes	

Variables:	Type	and	Type	Conversion	

•  some	languages,	e.g.	MATLAB,	shells,	Perl	are	
weakly	typed:	they	do	automaac	type	
conversions	(one	type	can	be	treated	as	another)	
–  this	is	nice	at	first,	occasionally	this	leads	to	nasty/
hard	to	find	problems	(e.g.	string	interpreted	as	
number,	etc.)	

•  Other	languages	are	very	picky	and	will	tell	you	
that	you	can’t	add	a	real	number	to	a	complex	
number	without	explicitly	converang.	
– Why?	It	can	produce	more	efficient	machine	code.	
–  Picky	vs	loose	is	a	design	decision	

Variables:	Value	

•  A	value	of	the	type	of	the	variable:	42,	
3.1415926...,	false,	‘text	string’,	i.e.,	the	thing	we	
stuff	in	the	box	

•  Values	can/should	change	during	the	runame	of	
the	program.	Some	languages	(not	MATLAB)	
allow	you	to	define	a	named	constant,	for	values	
that	can’t	change.	

•  We	need	to	be	able	to	assign	values	to	variables,	
and	also	access	(dereference)	the	values.	

Assignment	and	Access	

•  Assignment:	set	the	value	of	a	variable	
– MATLAB:	num_glaciers = 105
–  tcsh	scripang:	set filename = “12jun30dena.dat”

•  Access:	get	the	value	of	a	variable	
– MATLAB:	disp(num2str(num_glaciers))
–  tcsh	scripang:	echo $filename

•  What	does	this	do?	(MATLAB)	
–  num_glaciers = num_glaciers + 1

MATLAB	Treats	Everything	as	a	Matrix	

•  Arrays	or	matrices	are	lists,	vectors,	matrices	
of	data	(1	to	n	dimensional)	

•  Therefore	instead	of	one	value	they	hold	a	list	
of	values	linked	to	a	chunk	of	memory	(a	
sequence	of	boxes)	

•  Access	by	index	number:	glaciers(5),
cov(3,2)

•  Shells	allow	only	vectors	(1-D	arrays).	

Example	Arrays	
•  A	numeric	array:	

•  Values	can	be	a	mix	of	integers,	real	and	complex	numbers.	
>> foo = [1; 2; 3+i; 4]

foo =
 1.0000
 2.0000
 3.0000 + 1.0000i
 4.0000
•  You	can	browse	these	values	in	the	variable	browser	within	

the	MATLAB	GUI.	

Index	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Value	 0	 -3.2	 1000	 NaN	 1	 5	 -90	 9999	 3.141	 0	

Example	Arrays	
•  A	string	array:	

•  Examples	of	assigning	and	accessing	strings:	
>> foo = ‘Hello Work’
>> foo(4)
ans =

 ‘l’
>> foo(1)
ans =

 ‘H’
>> foo(1) + 1
ans =

 73

Index	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Value	 H	 e	 l	 l	 o	 		 W	 o	 r	 k	

What	is	going	on	here!?	

An	example	

Jeff	
0:10	
1:00	
No	way,	José!	

How	to	Make	the	Table	

The	Importance	of	Playing	Around	
•  You	will	learn	more	if	you	spend	ame	playing	
around	with	the	computer,	trying	to	make	it	do	
something	interesang	to	you.	

•  You	can	start	with	the	exercises,	typing	them	
from	the	lecture	notes	or	even	doing	a	copy	and	
paste	
–  You	do	have	to	watch	out	for	apostrophes:	the	
straight	apostrophe	and	the	curly	ones	(‘’)	are	actually	
different	characters!	

– Word	processors	today	“help”	you	by	automaacally	
making	curly	apostrophes	and	quotaaon	marks	
because	it	looks	fancier.	

	

