Fundamental Programming Principles:
Variables and Data Types

YOULL NEVER FINDA
PROGRAMMING LANGUAGE
THAT FREES YOU FROM

THE BURDEN OF
CLARIFYING
YOUR 1DEAS.
Beyond the Mouse
GEOS 436/636 I S J
(

Jeff Freymueller, Sep 5, 2017 eurr KNOwW J
WHAT I MEAN!

“The Uncomfortable Truths Well”,
http://xkcd.com/568 (April 13, 2009)

Today’s Schedule

* How does computer programming work
— What is a programming language?
— What is a program?

* Variables and Data Types

— How do we store values of different kinds?
* Numbers
 Strings of text
 More complicated things (like images, for example)

Definitions

* A programming language is an unambiguous
artificial language that is made up of a set of
symbols (vocabulary) and grammatical rules
(syntax) to instruct a machine.

A program is a set of instructions in one or
multiple programming languages that specifies
the behavior of a machine.

 Compilation or interpretation is the verification
of a program and its translation into machine
readable instructions of a specific platform.

What Language Does the CPU
Understand?

 The CPU (Central Processing Unit) actually
understands only a language composed entirely of
numbers, like this:
— “157 65530 22 77 854” (this is a made-up example)

— This means “execute instruction #157 using an
argument 65530, then execute instruction #22, then
execute instruction #77 using an argument 854"

— The language definition tells the machine that
instruction #157 takes one argument, but #22 does not.
* Itis possible for a person to write code in this

machine language, but almost nobody does it any
more because it is so inconvenient.

| Actually Did This

IRlelolc|®k|AIm|:| |slslol2] |plils|Als|s|Emisllele] | | I I 1L L]]|
BIY[| U[ElF A [FRE Myt gt ‘if;f¢Qf¢}
6502 Assempry] LANpoAGE i
x>*3170600
BLYWhkst 20 '%‘* gl< ST aRT .
Lb A
SITlal IMLmlviElc (o 3 FA)
L0 '>sTARTE t
ST A MLMVEC+ |
RIT|S
STAIRHT Cmp #' b o mMmAND Tlo| DI As|s|EiMpLE
BeQ| oV ER /[;
ERROPR % Ele|RloR| [LIE5FI7])
0 VieR Jis|R| [Rlplo|B (ﬁ7m) S8kl p] [a] [3lP] A ele
s R Rpo A (&7A7)/Q5AD¢;;:;;?:‘§ﬁmr
Blclc] ERRIPIR |;11k] [CLAREY =D, ZIRIRICR
sl T [(lera iV [slflale| [TmPl2] [4] TPl

Programming Languages

* Can be broken into two large families:

* Interpreted languages. An interpreter program
takes in commands, check syntax and translates

to machine language at runtime (e.g., Matlab,
Unix Shell)

 Compiled languages. Programs are translated
and saved in machine language by a compiler. At
runtime no additional interpretation is necessary
(e.g., FORTRAN, C/C++).

— These generally run much faster than interpreted
languages

1.

Now, How Does Programming Work?

N

o v s W

Open a text editor (MATLAB editor, vi, notepad, Text Wrangler, ... not MS Word)
nano? REAL HEY. REAL WELL, REAL NO, REAL | |REAL PROGRAMVERS EXCUSE ME, BUT
PROGRAMMERS PROGRAMMERS | [PROGRAMMERS | | PROGRAMMERS USE A MAGNETIZED REAL PROGRAMMERS
USE emacs USE vim. VSE ed. USE cot. NEEDLE AND A USE BUTTERFLIES.

/ l | STEADY HAND.
Q | '
- THE DISTURBANCE RIPPLES ~ WHICH ACT AS LENSES AT [NicE
THEYOPEN THEIR | QuTW/ARD, CHANGING THE FLOW DEFLECT INCOMING COSMIC COURSE. THERE
HANDS AND LET TH ‘ COURSE, THERES AN EMACS
v THE | OF THE EDDY CURRENTS RAYS, FOCUSING THEM TO COMMAND TO DO THAT.
DELICATE WINGS FLAPONCE.| N THE UPPER ATMOSPHERE. STRIKE THE DRIVE PLATIER ,
e AND FLIP THE DESIRED BIT. OH YEAH! GOOD (L
- CxTt C M- Duherfy
7y 1 /
\
= 2 \ y,
THESE CAUSE moqamam Pocms = a
OF HIGHER-PRESSURE AIRTO FORM, —\\ // DA, E““CS

translate your (physical or mental) flowchart into a set of instructions according to
the rules of a programming language

test your program for syntactical correctness (ask the interpreter/compiler)
if errors, fix them and go back to (3)

test your program for semantic errors (the “fun” part!)

if errors, fix them and go back to (3)

11

13

15

17

19

21

23

25

Example: Hello World

>> dsp(halo orld
??? dsp(halo orld

Error: Unexpected MATLAB expression.

>> dsp('halo_orld
???_dsp(’halo orld

Error: A MATLAB string constant is not terminated properly.

>> dsp(’halo_orld’
??? dsp(’halo_orld’

Error: Expression or statement is

>> dsp('halo_orld ")

??? Undefined function or method ’'dsp’ for input arguments of type ’char’.

>> disp(’'halo_orld"’)
halo orld

% Sematically correct,
%

>> disp(’hello_world’)
hello world

if you want to say

lhii

incorrect—possibly unbalanced (,

to the world:

{, or

[

The MATLAB Editor Helps You

Editor - untitled*
File Edit Text Go Cell Tools Debug Desktop Window Help

g = \ \ oy . » (= a

X a wéj_JH,, B9 ¢t o 53O M @k -7 1a 5]
Z = rE : % | o
2’8 k&8 - 1.0 + + 11| x [¥ =8)
1 disp('Eello world') [d
2
3 z = linspace(1,10,10);
4
5 s = ginh(z) + coshz); —_
6
7 foo = bar + 3 —
8 —
9

4 time_series_vel.m © extract_pixels.m O tsfitm © test_deltav.m 2

script Ln 5 Col 22

The MATLAB Editor Helps You

|1 OO O Editor - untitled*

=
| File Edit Text GCo Cell Tools Debug Desktop Window Help L
- % o - 4 . < \ =N ry » I
EX a N 2JJH §o :ﬁ'q A S =7 M«b'V_ rD':’_
? E = : %]]
‘é = [;@ - 1.0 + - 1.1 X ‘Z&d l&v &
i1 disp('Hello world') e
§2
13 z = linspace(1,10,10); L
£ 4
2 s = sinh(z) + coshz); s Line 5: Parse error at')': usage might be invalid MATLAB syntax. |~
7 foo = bar + j —_—
8
9
4 © extract_pixels.m © tsfitm © test_deltav.m & untitled* [2
script Ln 7 Col 14 y/

The MATLAB Editor Helps You

NN Editor - untitled* |
File Edit Text GCo Cell Tools Debug Desktop Window Help |
% 5 =" 3 \ 3 s » [

x 2 «» 70030 Hd & B9 o S BE- ek (O W4 |
4 rm = - ™
7’868 - (1.0 + =+ 11| x ¥ ¥ ©

1 disp('Hello world') |
2

3 z = linspace(1,10,10); L
4

5 s = sinh(z) + coshz); -
6

7 foo = bar +) Line 7: Parse error at';': usage might be invalid MATLAB syntax. |-
8

9

4 © extract_pixels.m © tsfitm © test_deltav.m & untitled* 2

'script 'Ln 7 Col 14

What is a Variable?

Donald Knuth: A quantity that may possess
different values as a program is being executed.

Mehran Sahami: A box in which we stuff things —
i.e. a box with variable content.

Wikipedia: User defined keyword that is linked to
a value stored in computer’s memory (runtime).

The concept of a variable consists of:
— Name

— Type
— Value

Variables: Name

USE MEANINGFUL NAMES!

Must follow programming language rules

— MATLAB variable names must begin with a letter, followed
by any combination of letters, digits, and underscores.
MATLAB distinguishes between uppercase and lowercase.
No reserved keywords!

USE MEANINGFUL NAMES, i.e. names that speak:
‘lengthGlacier’ or ‘glacier length’ NOT NOT
NOT ‘a’ — avoid ambiguity

use consistent formatting, i.e.: ‘my cool wvar’ or
‘myCoolVar’ —this is easier to read

a gazillion style guides exist — punchline: use
meaningful names, be consistent (that’s hard enough)!

Variables: Type

* What s a type? — Think of sets of numbers in
math: N,R,Z, ...The type refers to how numbers
are being represented in a computer’s memory,

i.e. which bit has which meaning, and how many
bits are necessary

* primitive, built in types — for MATLAB e.g.:
‘int32’, ‘double’, ‘boolean’ (important for
*printf functions)

e complex, home made types — (arrays,) structs,
cell arrays (Matlab), classes

Variables: Type and Type Conversion

 some languages, e.g. MATLAB, shells, Perl are
weakly typed: they do automatic type
conversions (one type can be treated as another)

— this is nice at first, occasionally this leads to nasty/
hard to find problems (e.g. string interpreted as
number, etc.)

e Other languages are very picky and will tell you
that you can’t add a real number to a complex
number without explicitly converting.

— Why? It can produce more efficient machine code.

— Picky vs loose is a design decision

Variables: Value

* A value of the type of the variable: 42,
3.1415926..., false, ‘text string’, i.e., the thing we
stuff in the box

* Values can/should change during the runtime of
the program. Some languages (not MATLAB)
allow you to define a named constant, for values
that can’t change.

* We need to be able to assign values to variables,
and also access (dereference) the values.

Assignment and Access

* Assignment: set the value of a variable
— MATLAB: num glaciers = 105

— tcsh scripting: set filename = “12jun30dena.dat”

e Access: get the value of a variable
— MATLAB: disp(num2str(num glaciers))
— tcsh scripting: echo $filename

 What does this do? (MATLAB)

— num glaciers = num glaciers + 1

-

MATLAB Treats Everything as a Matrix

Arrays or matrices are lists, vectors, matrices
of data (1 to n dimensional)

Therefore instead of one value they hold a list
of values linked to a chunk of memory (a
sequence of boxes)

Access by index number: glaciers(5),
cov(3,2)

Shells allow only vectors (1-D arrays).

Example Arrays

* A numeric array:

m-_m_m_-mm

Value O -3.2 1000 NaN -9 9999 3.141 O

* Values can be a mix of integers, real and complex numbers.
>> foo = [1l; 2; 3+i; 4]

foo =
1.0000
2.0000
3.0000 + 1.00001
4.0000

* You can browse these values in the variable browser within
the MATLAB GUI.

Example Arrays

* Astring array:

m__m___-mm

Value H e

* Examples of assigning and accessing strmgs.
>> foo = ‘Hello Work'’
>> foo(4)
ans =
lll
>> foo(1l)
ans =
4 H 4
>> foo(l) + 1

ans73= <€ What is going on herel?

An example

Setting up a numeric Matrix: Equinox marathon pacing tables

index | Mile | record | well trained | mildly trained
1 1 0:05:55 | 0:08:42 0:10:55
2) 0:30:01 | 0:44:06 0:55:21
3 10 0:59:56 | 1:28:01 1:50:29
4 15 1:35:01 | 2:19:33 2:55:05
) 20 2:04:59 | 3:03:34 3:50:26
6 25 2:32:19 | 3:43:43 4:40:50
7 26.2 | 2:40:00 | 3:55:00 4:55:00

Jeff
0:10
1:00
No way, José!

11

13

15

17

19

21

23

25

27

29

31

33

How to Make the Table

% UAF/GlI Beyond the mouse, fall 2010, Ronni Grapenthin

% EXAMPLE: 2D matrix (Table), prints list of times that can be used for optimal
% Equinox 2011 preparation

% parameter: miles — miles you’ve run

function pace_table = pacing_table (miles)

% Set up pacing table: Give miles as numbers and times as strings (requires a cell array,
% hence the curly braces)

pace_table = { 1 "0:05:55’ ’0:08:42° ’'0:10:55°;
5 "0:30:01’ ’'0:44:06°' ’0:55:21°;
10 '0:59:56° ’1:28:01° '1:50:29°;
15 ’1:35:01’ ’2:19:33’ ’'2:55:05°;
20 '2:04:59° ’3:03:34°' '3:50:26°’;
26.2 ’'2:40:00° ’3:55:00° ’'4:55:00°'};

% Since |’'m lazy and didn’t want to type all the miles, a mile does not equal the index,

% hence we’ |l have to do some math. Index is rounded number of miles divided by 5. Since

% Matlab indices start at 1, we have to add a 1. Otherwise everything smaller than 2.5 miles
% would result in an error

idx = round(miles/5)+1;

% lame output
pace_table (idx ,:)
pause

% fancy output:

disp('_");

disp(’___miles__ . record___._well_trained__mildly_trained’);

disp(’'_.; oF

g:jp(pace_table {ER Listing 2.2: pacing_table.m

The Importance of Playing Around

* You will learn more if you spend time playing
around with the computer, trying to make it do
something interesting to you.

* You can start with the exercises, typing them
from the lecture notes or even doing a copy and

paste

— You do have to watch out for apostrophes: the
straight apostrophe and the curly ones (“) are actually
different characters)!

— Word processors today “help” you by automatically
making curly apostrophes and quotation marks
because it looks fancier.

