
Beyond the Mouse – A
Short Course on

Programming
2. Fundamental Programming

Principles I:
Variables and Data Types

Ronni Grapenthin

Geophysical Institute, University of Alaska
Fairbanks

September 17, 2009
“The Uncomfortable Truths Well”,

http://xkcd.com/568 (April 13, 2009)

1 / 23

Today’s schedule . . .

1 Solutions to Exercises

2 How does programming work?

3 Variables and Datatypes

2 / 23

Today’s schedule

1 Solutions to Exercises

2 How does programming work?

3 Variables and Datatypes

3 / 23

Exercise #0

. . .
thanks for the images :)

4 / 23

Exercise #1

N = 1

Rethink!
NO!

I guess

Need to
program?

START

Attend class N

Interesting?
Useful?

Accessible?

Yes.
Go through examples

Yes.Interesting?
Useful?

Go through exercises
Send email with N and

comments to Ronni

NO!

NO!

Have a l i fe!N = N+1

N < 14?

Yes.

NO! Send email with
comments to Ronni

N=1: "Thinking Programs"

N=2,3: "Fundamental Principles"

N=4,5: "Unix Tools"

N=6,7: "GMT"

N=8,..,12: "Matlab"

N=13: "Intro to HTML/CSS"

N=14: "Next steps, wrap up"

Listing 1: Seminar flow (fixed)

5 / 23

Exercise #1

N = 1

Rethink!
NO!

I guess

Need to
program?

START

Attend class N

Interesting?
Useful?

Accessible?

Yes.
Go through examples

Yes.Interesting?
Useful?

Go through exercises
Send email with N and

comments to Ronni

NO!

NO!

Have a l i fe!N = N+1

N < 14?

Yes.

NO! Send email with
comments to Ronni

N=1: "Thinking Programs"

N=2,3: "Fundamental Principles"

N=4,5: "Unix Tools"

N=6,7: "GMT"

N=8,..,12: "Matlab"

N=13: "Intro to HTML/CSS"

N=14: "Next steps, wrap up"

TIMING???

Listing 1: Seminar flow (fixed)

5 / 23

Exercise #1

N = 1

Rethink!
NO!

I guess

Need to
program?

START

Attend class N

Interesting?
Useful?

Accessible?

Yes.
Go through examples

Yes.Interesting?
Useful?

Go through exercises
Send email with N and

comments to Ronni

NO!

NO!

Have a l i fe!N = N+1

N < 15?

Yes.

NO! Send email with
comments to Ronni

N=1: "Thinking Programs"

N=2,3: "Fundamental Principles"

N=4,5: "Unix Tools"

N=6,7: "GMT"

N=8,..,12: "Matlab"

N=13: "Intro to HTML/CSS"

N=14: "Next steps, wrap up"

TIMING???

Listing 1: Seminar flow (fixed)

5 / 23

Exercise #1

N = 1

Rethink!
NO!

I guess

Need to
program?

START

Attend class N

Interesting?
Useful?

Accessible?

Yes.
Go through examples

Yes.Interesting?
Useful?

Go through exercises
Send email with N and

comments to Ronni

NO!

NO!

Have a l i fe!N = N+1

N < 15?

Yes.

NO! Send email with
comments to Ronni

N=1 (9/10): "Thinking Programs"

N=2,4 (9/17,10/01): "Fundamental Principles"

N=3,5 (9/24,10/08): "Matlab I,II"

...

TIMING???

Listing 1: Seminar flow (fixed)

5 / 23

Exercise #1

N = 1

Rethink!
NO!

I guess

Need to
program?

START

Attend class N

Interesting?
Useful?

Accessible?

Yes.
Go through examples

Yes.Interesting?
Useful?

Go through exercises
Send email with N and

comments to Ronni

NO!

NO!

while ’ today’ not
date(N) ...

Have a l i fe!

N = N+1

N < 15?
Yes. NO! Send email with

comments to Ronni

N=1; date=(9/10): "Thinking Programs"

N=2,4; date=(9/17,10/01): "Fundamental Principles"

N=3,5; date=(9/24,10/08): "Matlab I,II"

...

Listing 1: Seminar flow (fixed)

5 / 23

Exercise in general

I’ll come back to you with individual comments on project snapshots,
flow charts etc.

6 / 23

Today’s schedule

1 Solutions to Exercises

2 How does programming work?

3 Variables and Datatypes

7 / 23

How does programming work?

Well, fist we should clearify terminology here!

What is a programming language?

What is a program?

8 / 23

Alright, what is it then?

Definitions (broad sense)
A programming language is an unambiguous artificial language that
is made up of a set of symbols (vocabulary) and grammatical rules
(syntax) to instruct a machine.

A program is a set of instructions in one or multiple programming
languages that specifies the behavior of a machine.

Compilation or interpretation is the verification of a program and its
translation into in the machine readable instructions of a specific
platform.

9 / 23

Programming languages . . . continued

Two broad families can be identified:
1 Interpreted languages

An interpreter program is necessary to take in commands, check
syntax and translate to machine language at runtime (e.g., Matlab,
Unix Shell)

2 Compiled languages
Programs are translated and saved in machine language. At
runtime no additional program is necessary (e.g., C/C++).

10 / 23

Programming languages . . . continued

Two broad families can be identified:
1 Interpreted languages

An interpreter program is necessary to take in commands, check
syntax and translate to machine language at runtime (e.g., Matlab,
Unix Shell)

2 Compiled languages
Programs are translated and saved in machine language. At
runtime no additional program is necessary (e.g., C/C++).

10 / 23

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

11 / 23

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

11 / 23

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

11 / 23

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

11 / 23

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)

5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

11 / 23

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)

6 if errors, fix them and go back to (3)

11 / 23

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the rules of an applicable programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

11 / 23

Don’t even think that’s as simple as it sounds . . .

‘Hello World’ in Matlab
1 >> dsp (halo o r l d

??? dsp (halo o r l d
3 |

E r ro r : Unexpected MATLAB expression .
5

>> dsp (’ halo o r l d
7 ??? dsp (’ halo o r l d

|
9 Er ro r : A MATLAB s t r i n g constant i s not terminated p rope r l y .

11 >> dsp (’ halo o r l d ’
??? dsp (’ halo o r l d ’

13 |
E r ro r : Expression or statement i s i n c o r r e c t−−poss ib l y unbalanced (, { , or [.

15
>> dsp (’ halo o r l d ’)

17 ??? Undefined function or method ’ dsp ’ for input arguments o f type ’ char ’ .

19 >> disp (’ halo o r l d ’)
halo o r l d

21
% Semat ica l l y co r rec t , i f you want to say ’ h i ’ to the world :

23 %
>> disp (’ h e l l o wor ld ’)

25 h e l l o wor ld

Listing 2.1: hello_world.log

12 / 23

Today’s schedule

1 Solutions to Exercises

2 How does programming work?

3 Variables and Datatypes

13 / 23

Variables (1)

Definitions – a selection
Donald Knuth: A quantity that may possess different values as a
program is being executed.
Mehran Sahami: A box in which we stuff things – i.e. a box with
variable content.
Wikipedia: User defined keyword that is linked to a value stored in
computer’s memory (runtime).

The concept of a variable consists of:

name
type
value

14 / 23

Variables (1)

Definitions – a selection
Donald Knuth: A quantity that may possess different values as a
program is being executed.
Mehran Sahami: A box in which we stuff things – i.e. a box with
variable content.
Wikipedia: User defined keyword that is linked to a value stored in
computer’s memory (runtime).

The concept of a variable consists of:
name
type
value

14 / 23

Memory interlude

“Depth”,
http://xkcd.com/485 (September 16, 2009)

15 / 23

Memory interlude

“Depth”,
http://xkcd.com/485 (September 16, 2009)

15 / 23

Variables (2) – name

USE MEANINGFUL NAMES!

valid, follow programming language rules – MATLAB variable
names must begin with a letter, followed by any combination of
letters, digits, and underscores. MATLAB distinguishes
between uppercase and lowercase. No reserved keywords!
USE MEANINGFUL NAMES, i.e. names that speak:
‘lengthGlacier’ or ‘glacier_length’ NOT NOT NOT ‘a’ –
avoid ambiguity
use consistent formatting, i.e.: ‘my_cool_var’ vs. ‘myCoolVar’ –
supports reading
a gazillion style guides exist – punchline: use meaningful names,
be consistent (that’s hard enough)!

16 / 23

Variables (2) – name

USE MEANINGFUL NAMES!
valid, follow programming language rules – MATLAB variable
names must begin with a letter, followed by any combination of
letters, digits, and underscores. MATLAB distinguishes
between uppercase and lowercase. No reserved keywords!

USE MEANINGFUL NAMES, i.e. names that speak:
‘lengthGlacier’ or ‘glacier_length’ NOT NOT NOT ‘a’ –
avoid ambiguity
use consistent formatting, i.e.: ‘my_cool_var’ vs. ‘myCoolVar’ –
supports reading
a gazillion style guides exist – punchline: use meaningful names,
be consistent (that’s hard enough)!

16 / 23

Variables (2) – name

USE MEANINGFUL NAMES!
valid, follow programming language rules – MATLAB variable
names must begin with a letter, followed by any combination of
letters, digits, and underscores. MATLAB distinguishes
between uppercase and lowercase. No reserved keywords!
USE MEANINGFUL NAMES, i.e. names that speak:

‘lengthGlacier’ or ‘glacier_length’ NOT NOT NOT ‘a’ –
avoid ambiguity
use consistent formatting, i.e.: ‘my_cool_var’ vs. ‘myCoolVar’ –
supports reading
a gazillion style guides exist – punchline: use meaningful names,
be consistent (that’s hard enough)!

16 / 23

Variables (2) – name

USE MEANINGFUL NAMES!
valid, follow programming language rules – MATLAB variable
names must begin with a letter, followed by any combination of
letters, digits, and underscores. MATLAB distinguishes
between uppercase and lowercase. No reserved keywords!
USE MEANINGFUL NAMES, i.e. names that speak:
‘lengthGlacier’ or ‘glacier_length’ NOT NOT NOT ‘a’ –
avoid ambiguity

use consistent formatting, i.e.: ‘my_cool_var’ vs. ‘myCoolVar’ –
supports reading
a gazillion style guides exist – punchline: use meaningful names,
be consistent (that’s hard enough)!

16 / 23

Variables (2) – name

USE MEANINGFUL NAMES!
valid, follow programming language rules – MATLAB variable
names must begin with a letter, followed by any combination of
letters, digits, and underscores. MATLAB distinguishes
between uppercase and lowercase. No reserved keywords!
USE MEANINGFUL NAMES, i.e. names that speak:
‘lengthGlacier’ or ‘glacier_length’ NOT NOT NOT ‘a’ –
avoid ambiguity
use consistent formatting, i.e.: ‘my_cool_var’ vs. ‘myCoolVar’ –
supports reading

a gazillion style guides exist – punchline: use meaningful names,
be consistent (that’s hard enough)!

16 / 23

Variables (2) – name

USE MEANINGFUL NAMES!
valid, follow programming language rules – MATLAB variable
names must begin with a letter, followed by any combination of
letters, digits, and underscores. MATLAB distinguishes
between uppercase and lowercase. No reserved keywords!
USE MEANINGFUL NAMES, i.e. names that speak:
‘lengthGlacier’ or ‘glacier_length’ NOT NOT NOT ‘a’ –
avoid ambiguity
use consistent formatting, i.e.: ‘my_cool_var’ vs. ‘myCoolVar’ –
supports reading
a gazillion style guides exist – punchline: use meaningful names,
be consistent (that’s hard enough)!

16 / 23

Variables (3) – type

What is a type? – Think of sets of numbers in math: N, R, Z, . . . The
type refers to how numbers are being represented in a computer’s
memory, i.e. which bit has which meaning.

Two kinds of Types
primitive, built in types – for MATLAB e.g.: ‘int32’, ‘double’,
‘boolean’
complex, home made types – (arrays,) structs, cell arrays
(Matlab), classes/objects

Types in Programming Languages
some languages, e.g. MATLAB, Shells, Perl are weakly typed:
implicit type conversions (OR one type can be treated as another)
this is nice at first, occasionally this leads to nasty/hard to fix
problems (e.g. string interpreted as number, etc.)

17 / 23

Variables (3) – type

What is a type? – Think of sets of numbers in math: N, R, Z, . . . The
type refers to how numbers are being represented in a computer’s
memory, i.e. which bit has which meaning.

Two kinds of Types
primitive, built in types – for MATLAB e.g.: ‘int32’, ‘double’,
‘boolean’
complex, home made types – (arrays,) structs, cell arrays
(Matlab), classes/objects

Types in Programming Languages
some languages, e.g. MATLAB, Shells, Perl are weakly typed:
implicit type conversions (OR one type can be treated as another)
this is nice at first, occasionally this leads to nasty/hard to fix
problems (e.g. string interpreted as number, etc.)

17 / 23

Variables (3) – type

What is a type? – Think of sets of numbers in math: N, R, Z, . . . The
type refers to how numbers are being represented in a computer’s
memory, i.e. which bit has which meaning.

Two kinds of Types
primitive, built in types – for MATLAB e.g.: ‘int32’, ‘double’,
‘boolean’
complex, home made types – (arrays,) structs, cell arrays
(Matlab), classes/objects

Types in Programming Languages
some languages, e.g. MATLAB, Shells, Perl are weakly typed:
implicit type conversions (OR one type can be treated as another)
this is nice at first, occasionally this leads to nasty/hard to fix
problems (e.g. string interpreted as number, etc.)

17 / 23

Variables (4) – value

Value
a value of the type of the variable: 23, 3.1415926..., false

i.e., the thing we stuff in the box
can/should change during the runtime of the program, otherwise
use a constant (if possible)

Declaring a variable and Assigning a value:
In General: (type) name = value; or (type) name =
expression;

Matlab: myNewVar = 10; TC-Shell (differs) set myNewVar = 10;
Access to the values (de-referencing):
Matlab: use myNewVar; TC-Shell (differs) use ‘$’: $myNewVar

What’s that?
myNewVar = myNewVar + 1;

18 / 23

Variables (4) – value

Value
a value of the type of the variable: 23, 3.1415926..., false

i.e., the thing we stuff in the box
can/should change during the runtime of the program, otherwise
use a constant (if possible)

Declaring a variable and Assigning a value:
In General: (type) name = value; or (type) name =
expression;

Matlab: myNewVar = 10; TC-Shell (differs) set myNewVar = 10;
Access to the values (de-referencing):
Matlab: use myNewVar; TC-Shell (differs) use ‘$’: $myNewVar

What’s that?
myNewVar = myNewVar + 1;

18 / 23

Variables (4) – value

Value
a value of the type of the variable: 23, 3.1415926..., false

i.e., the thing we stuff in the box
can/should change during the runtime of the program, otherwise
use a constant (if possible)

Declaring a variable and Assigning a value:
In General: (type) name = value; or (type) name =
expression;

Matlab: myNewVar = 10; TC-Shell (differs) set myNewVar = 10;
Access to the values (de-referencing):
Matlab: use myNewVar; TC-Shell (differs) use ‘$’: $myNewVar

What’s that?
myNewVar = myNewVar + 1;

18 / 23

Advanced Variables: Vectors and Matrices (1)

Array variables
are lists, vectors, matrices of data (1 to n dimensional – book
keeping can become a hassle)
therefore instead of one value they hold a list of values
linked to a chunk of memory (a sequence of boxes)
access by index number
MATLAB treats everything as a matrix. Shells allow only vectors.

19 / 23

Memory interlude (2)

“Depth”,
http://xkcd.com/485 (September 16, 2009)

20 / 23

Memory interlude (2)

“Depth”,
http://xkcd.com/485 (September 16, 2009)

20 / 23

Advanced Variables: Vectors and Matrices (2)

Example
index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
sting: h e l l o w o r l d ! ! ! !
vector: 12 23.3 23.3 nan nan 1 42 42.1 23 5 nan nan 0 0 0

21 / 23

Advanced Advanced Variables: struct and Matlab
cell array (1)

structs, cells

organize and store data of different types in one variable
these are containers you can put integers, doubles, strings, arrays
of these, and other structs or cell arrays, etc ...

cell

MATLAB specific data type,
created using braces ’{...}’
must be used for strings of various
length!
elements are a vector in the
memory – access myCell(1), or
myCell{1,1}

can contain any other data type

myCell {:,1} {:,2}
{1,:} [1 5] [2.4 3.6; 4.3 1]
{2,:} {’MacGyver’ ’Bart’} true

Access: myCell(1),
myCell{1,1} or as given in
table.

22 / 23

Advanced Advanced Variables: struct and Matlab
cell array (1)

structs, cells

organize and store data of different types in one variable
these are containers you can put integers, doubles, strings, arrays
of these, and other structs or cell arrays, etc ...

cell

MATLAB specific data type,
created using braces ’{...}’
must be used for strings of various
length!
elements are a vector in the
memory – access myCell(1), or
myCell{1,1}

can contain any other data type

myCell {:,1} {:,2}
{1,:} [1 5] [2.4 3.6; 4.3 1]
{2,:} {’MacGyver’ ’Bart’} true

Access: myCell(1),
myCell{1,1} or as given in
table.

22 / 23

Advanced Advanced Variables: struct and Matlab
cell array (2)

struct

more organized array type:
access to fields by a name
can contain any other data
type
excellent for representing your
tables of data

student (1) (2) (3)
.name ’Jack’ ’Jo’ ’Jake’
.age 21 25 30

Access: student(1),
student.age, student.name

23 / 23

	Solutions to Exercises
	How does programming work?
	Variables and Datatypes

