
Beyond the Mouse – A
Short Course on

Programming
1. Thinking programs

Ronni Grapenthin

Geophysical Institute, University of Alaska
Fairbanks

April 15, 2009
“The Uncomfortable Truths Well”,

http://xkcd.com/568 (April 13, 2009)

1 / 24

Outline

1 Overview and Philosophies

2 Thinking programs

3 Building programs

4 Summary

2 / 24

Outline

1 Overview and Philosophies

2 Thinking programs

3 Building programs

4 Summary

3 / 24

The Program . . .

Rethink!
NO!Need to

program?
START

Listing 1: Seminar flow

4 / 24

The Program . . .

N = 1

Rethink!
NO!

I guess

Need to
program?

START

Attend seminar N

N=1: "Thinking Programs"

N=2: "Fundamental Principles"

N=3: "Unix Tools"

N=4: "General Matlab"

N=5: "Matlab I/O"

N=6: "Matlab and Antelope"

Listing 1: Seminar flow

4 / 24

The Program . . .

N = 1

Rethink!
NO!

I guess

Need to
program?

START

Attend seminar N

Interesting?
Useful?

Yes.
Go through examples

Send email with N and
comments to Ronni

NO!

N=1: "Thinking Programs"

N=2: "Fundamental Principles"

N=3: "Unix Tools"

N=4: "General Matlab"

N=5: "Matlab I/O"

N=6: "Matlab and Antelope"

Listing 1: Seminar flow

4 / 24

The Program . . .

N = 1

Rethink!
NO!

I guess

Need to
program?

START

Attend seminar N

Interesting?
Useful?

Yes.
Go through examples

Yes.Interesting?
Useful?

Go through exercises
Send email with N and

comments to Ronni

NO!

NO!

N=1: "Thinking Programs"

N=2: "Fundamental Principles"

N=3: "Unix Tools"

N=4: "General Matlab"

N=5: "Matlab I/O"

N=6: "Matlab and Antelope"

Listing 1: Seminar flow

4 / 24

The Program . . .

N = 1

Rethink!
NO!

I guess

Need to
program?

START

Attend seminar N

Interesting?
Useful?

Yes.
Go through examples

Yes.Interesting?
Useful?

Go through exercises
Send email with N and

comments to Ronni

NO!

NO!

Have a l i fe!

N=1: "Thinking Programs"

N=2: "Fundamental Principles"

N=3: "Unix Tools"

N=4: "General Matlab"

N=5: "Matlab I/O"

N=6: "Matlab and Antelope"

Listing 1: Seminar flow

4 / 24

The Program . . .

N = 1

Rethink!
NO!

I guess

Need to
program?

START

Attend seminar N

Interesting?
Useful?

Yes.
Go through examples

Yes.Interesting?
Useful?

Go through exercises
Send email with N and

comments to Ronni

NO!

NO!

Have a l i fe!N = N+1

N < 6?

Yes.

N=1: "Thinking Programs"

N=2: "Fundamental Principles"

N=3: "Unix Tools"

N=4: "General Matlab"

N=5: "Matlab I/O"

N=6: "Matlab and Antelope"

Listing 1: Seminar flow

4 / 24

The Program . . .

N = 1

Rethink!
NO!

I guess

Need to
program?

START

Attend seminar N

Interesting?
Useful?

Yes.
Go through examples

Yes.Interesting?
Useful?

Go through exercises
Send email with N and

comments to Ronni

NO!

NO!

Have a l i fe!N = N+1

N < 6?

Yes.

NO! Send email with
comments to Ronni

N=1: "Thinking Programs"

N=2: "Fundamental Principles"

N=3: "Unix Tools"

N=4: "General Matlab"

N=5: "Matlab I/O"

N=6: "Matlab and Antelope"

Listing 1: Seminar flow

4 / 24

The Program . . .

N = 1

Rethink!
NO!

I guess

Need to
program?

START

Attend seminar N

Interesting?
Useful?

Yes.
Go through examples

Yes.Interesting?
Useful?

Go through exercises
Send email with N and

comments to Ronni

NO!

NO!

Have a l i fe!N = N+1

N < 6?

Yes.

NO! Send email with
comments to Ronni

N=1: "Thinking Programs"

N=2: "Fundamental Principles"

N=3: "Unix Tools"

N=4: "General Matlab"

N=5: "Matlab I/O"

N=6: "Matlab and Antelope"

Listing 1: Seminar flow

4 / 24

The Program . . .

N = 1

Rethink!
NO!

I guess

Need to
program?

START

Attend seminar N

Interesting?
Useful?

Yes.
Go through examples

Yes.Interesting?
Useful?

Go through exercises
Send email with N and

comments to Ronni

NO!

NO!

Have a l i fe!N = N+1

N < 6?

Yes.

NO! Send email with
comments to Ronni

N=1: "Thinking Programs"

N=2: "Fundamental Principles"

N=3: "Unix Tools"

N=4: "General Matlab"

N=5: "Matlab I/O"

N=6: "Matlab and Antelope"Exercise #1:
What are possib le problems wi th

this program?

Listing 1: Seminar flow

4 / 24

Modules . . .

today: brainWashing() – Thinking Programs, me
The esoteric side of programming.

4/17: learnMantras() – Programming Principles, me again
Control stuctures, Variables and Datatypes, Functions, more on
Program design.
4/22: discoverWorld() – Unix Tools, Jeff Freymueller
Unix can make your life a lot easier. Intro to tools and scripting.
4/24: newSpeak() – General Matlab, Celso Reyes
How to do actual programming using Matlab. Things you can do to
your data.
4/29: startDataFlow() – Matlab I/O, Glenn Thompson
Getting data into Matlab . . . and out.
5/1: dataFlowPlus() – Matlab and Antelope, Matt Gardine
What is Antelope? How to access AVO and AEIC databases?

5 / 24

Modules . . .

today: brainWashing() – Thinking Programs, me
The esoteric side of programming.
4/17: learnMantras() – Programming Principles, me again
Control stuctures, Variables and Datatypes, Functions, more on
Program design.

4/22: discoverWorld() – Unix Tools, Jeff Freymueller
Unix can make your life a lot easier. Intro to tools and scripting.
4/24: newSpeak() – General Matlab, Celso Reyes
How to do actual programming using Matlab. Things you can do to
your data.
4/29: startDataFlow() – Matlab I/O, Glenn Thompson
Getting data into Matlab . . . and out.
5/1: dataFlowPlus() – Matlab and Antelope, Matt Gardine
What is Antelope? How to access AVO and AEIC databases?

5 / 24

Modules . . .

today: brainWashing() – Thinking Programs, me
The esoteric side of programming.
4/17: learnMantras() – Programming Principles, me again
Control stuctures, Variables and Datatypes, Functions, more on
Program design.
4/22: discoverWorld() – Unix Tools, Jeff Freymueller
Unix can make your life a lot easier. Intro to tools and scripting.

4/24: newSpeak() – General Matlab, Celso Reyes
How to do actual programming using Matlab. Things you can do to
your data.
4/29: startDataFlow() – Matlab I/O, Glenn Thompson
Getting data into Matlab . . . and out.
5/1: dataFlowPlus() – Matlab and Antelope, Matt Gardine
What is Antelope? How to access AVO and AEIC databases?

5 / 24

Modules . . .

today: brainWashing() – Thinking Programs, me
The esoteric side of programming.
4/17: learnMantras() – Programming Principles, me again
Control stuctures, Variables and Datatypes, Functions, more on
Program design.
4/22: discoverWorld() – Unix Tools, Jeff Freymueller
Unix can make your life a lot easier. Intro to tools and scripting.
4/24: newSpeak() – General Matlab, Celso Reyes
How to do actual programming using Matlab. Things you can do to
your data.

4/29: startDataFlow() – Matlab I/O, Glenn Thompson
Getting data into Matlab . . . and out.
5/1: dataFlowPlus() – Matlab and Antelope, Matt Gardine
What is Antelope? How to access AVO and AEIC databases?

5 / 24

Modules . . .

today: brainWashing() – Thinking Programs, me
The esoteric side of programming.
4/17: learnMantras() – Programming Principles, me again
Control stuctures, Variables and Datatypes, Functions, more on
Program design.
4/22: discoverWorld() – Unix Tools, Jeff Freymueller
Unix can make your life a lot easier. Intro to tools and scripting.
4/24: newSpeak() – General Matlab, Celso Reyes
How to do actual programming using Matlab. Things you can do to
your data.
4/29: startDataFlow() – Matlab I/O, Glenn Thompson
Getting data into Matlab . . . and out.

5/1: dataFlowPlus() – Matlab and Antelope, Matt Gardine
What is Antelope? How to access AVO and AEIC databases?

5 / 24

Modules . . .

today: brainWashing() – Thinking Programs, me
The esoteric side of programming.
4/17: learnMantras() – Programming Principles, me again
Control stuctures, Variables and Datatypes, Functions, more on
Program design.
4/22: discoverWorld() – Unix Tools, Jeff Freymueller
Unix can make your life a lot easier. Intro to tools and scripting.
4/24: newSpeak() – General Matlab, Celso Reyes
How to do actual programming using Matlab. Things you can do to
your data.
4/29: startDataFlow() – Matlab I/O, Glenn Thompson
Getting data into Matlab . . . and out.
5/1: dataFlowPlus() – Matlab and Antelope, Matt Gardine
What is Antelope? How to access AVO and AEIC databases?

5 / 24

Seminar materials

http://www.gps.alaska.edu/programming

Things to find:

slides: the actual presentation
handouts: write up of lectures that should culminate in a manual
type thing
examples: working samples from each lecture.
exercises: invitation for you.

Print slides before lecture so you can take necessary notes :)

This course is for you . . . give feedback!

6 / 24

The very basics (1)

From ‘The Conscience of a Hacker’, The Mentor (1986):
[. . .] I made a discovery today. I found a computer. Wait a second, this
is cool. It does what I want it to. If it makes a mistake, it’s because I
screwed it up. Not because it doesn’t like me . . .
Or feels threatened by me . . .
Or thinks I’m a smart ass . . .
Or doesn’t like teaching and shouldn’t be here [. . .]

7 / 24

The very basics (2)

Programming is beyond language.

Programming is about writing code that people can read.
Code is poetry.
RTFM and/or the internet

http://thinkgeek.com

“When I’m writing poetry,
it feels like the center of
my thinking is in a
particular place, and
when I’m writing code the
center of my thinking feels
in the same kind of place.”

Richard Gabriel,

Distinguished Engineer at Sun Microsystems

8 / 24

The very basics (2)

Programming is beyond language.
Programming is about writing code that people can read.

Code is poetry.
RTFM and/or the internet

http://thinkgeek.com

“When I’m writing poetry,
it feels like the center of
my thinking is in a
particular place, and
when I’m writing code the
center of my thinking feels
in the same kind of place.”

Richard Gabriel,

Distinguished Engineer at Sun Microsystems

8 / 24

The very basics (2)

Programming is beyond language.
Programming is about writing code that people can read.
Code is poetry.

RTFM and/or the internet

http://thinkgeek.com

“When I’m writing poetry,
it feels like the center of
my thinking is in a
particular place, and
when I’m writing code the
center of my thinking feels
in the same kind of place.”

Richard Gabriel,

Distinguished Engineer at Sun Microsystems

8 / 24

The very basics (2)

Programming is beyond language.
Programming is about writing code that people can read.
Code is poetry.
RTFM and/or the internet

http://thinkgeek.com

“When I’m writing poetry,
it feels like the center of
my thinking is in a
particular place, and
when I’m writing code the
center of my thinking feels
in the same kind of place.”

Richard Gabriel,

Distinguished Engineer at Sun Microsystems

8 / 24

More Philosophy . . .

Jon Claerbout (a geophysicist), as quoted in “WaveLab and
Reproducible Research”:

An article about computational science in a scientific
publication is not the scholarship itself, it is merely
advertising of the scholarship. The actual scholarship is the
complete software development environment and the
complete set of instructions which generated the figures.

Implications . . .
publications should include data and code (example: Okada)
figures should be reproducible by readers
write code that others can use!

9 / 24

More Philosophy . . .

Jon Claerbout (a geophysicist), as quoted in “WaveLab and
Reproducible Research”:

An article about computational science in a scientific
publication is not the scholarship itself, it is merely
advertising of the scholarship. The actual scholarship is the
complete software development environment and the
complete set of instructions which generated the figures.

Implications . . .
publications should include data and code (example: Okada)
figures should be reproducible by readers
write code that others can use!

9 / 24

More Philosophy . . .

Jon Claerbout (a geophysicist), as quoted in “WaveLab and
Reproducible Research”:

An article about computational science in a scientific
publication is not the scholarship itself, it is merely
advertising of the scholarship. The actual scholarship is the
complete software development environment and the
complete set of instructions which generated the figures.

Implications . . .
publications should include data and code (example: Okada)
figures should be reproducible by readers
write code that others can use!

9 / 24

What does that mean?

Good
1 function fp = screw2d (x , xf , d , sdot)

% function fp = screw2d (x , xf , d , sdot)
3 %

% Computes f a u l t−p a r a l l e l s l i p ra te for 2D screw d i s l o c a t i o n
5 % wi th f a u l t loca ted at xf , w i th l ock ing depth d and s l i p ra te sdot .

% W i l l compute a t one or many l o c a t i o n s x .
7 %

% x column vec to r
9 % x f sca la r

% d sca la r
11 % sdot sca la r

%
13 i f (d == 0)

fp = sdot∗0.5∗sign (x−x f∗ones (size (x))) ;
15 else

fp = sdot∗atan2 ((x−x f∗ones (size (x))) , d) / pi ;
17 end

10 / 24

What does that mean?

Bad
function fp = screw2d (x , xf , d , sdot)

2 i f (d==0) fp=sdot∗0.5∗sign (x−x f∗ones (size (x))) ; else fp=sdot∗atan2 ((x−x f∗ones (size (x))) , d) / pi ;
end

11 / 24

Outline

1 Overview and Philosophies

2 Thinking programs

3 Building programs

4 Summary

12 / 24

Thinking programs – Breaking down complex tasks

Example 1:

Getting into Grad School

things to do:
apply, figure out where to go, visa stuff, class work, research, thesis . . .

13 / 24

Thinking programs – Breaking down complex tasks

Example 1:

Getting into Grad School
things to do:
apply, figure out where to go, visa stuff, class work, research, thesis . . .

13 / 24

Thinking programs – Breaking down complex tasks

Find schools

Listing 1: Seminar flow

14 / 24

Thinking programs – Breaking down complex tasks

Find schools

search web

talk to advisors

Listing 1: Seminar flow

14 / 24

Thinking programs – Breaking down complex tasks

Find schools

apply

search web

talk to advisors

GRE, TOEFL

paperwork

Listing 1: Seminar flow

14 / 24

Thinking programs – Breaking down complex tasks

Find schools

apply

wait ...

search web

talk to advisors

GRE, TOEFL

paperwork

Listing 1: Seminar flow

14 / 24

Thinking programs – Breaking down complex tasks

Find schools

apply

wait ...

make decision

search web

talk to advisors

GRE, TOEFL

paperwork

Listing 1: Seminar flow

14 / 24

Thinking programs – Breaking down complex tasks

Find schools

apply

wait ...

make decision

move

search web

talk to advisors

GRE, TOEFL

paperwork

do visa stuff

pack and leave

Listing 1: Seminar flow

14 / 24

Thinking programs – Breaking down complex tasks

Find schools

apply

wait ...

make decision

move

do classwork do research write papers

search web

talk to advisors

GRE, TOEFL

paperwork

do visa stuff

pack and leave

Listing 1: Seminar flow

14 / 24

Thinking programs – Breaking down complex tasks

Find schools

apply

wait ...

make decision

move

do classwork do research write papers

search web

talk to advisors

GRE, TOEFL

paperwork

do visa stuff

pack and leave

Listing 1: Seminar flow

14 / 24

Thinking programs – Breaking down complex tasks

Find schools

apply

wait ...

make decision

move

do classwork do research write papers

write thesis

defend

search web

talk to advisors

GRE, TOEFL

paperwork

do visa stuff

pack and leave

Listing 1: Seminar flow

14 / 24

Thinking programs – Breaking down complex tasks

Find schools

apply

wait ...

make decision

move

do classwork do research write papers

write thesis

defend

search web

talk to advisors

GRE, TOEFL

paperwork

do visa stuff

pack and leave

Listing 1: Seminar flow

14 / 24

Thinking programs – Breaking down complex tasks

Find schools

apply

wait ...

make decision

move

do classwork do research write papers

write thesis

defend

search web

talk to advisors

GRE, TOEFL

paperwork

do visa stuff

pack and leave

find a job

Listing 1: Seminar flow

14 / 24

Thinking programs – Breaking down complex tasks

Example 2:

Grad student’s Average Day

possible activities:
eat, sleep, work, do stuff, . . .

15 / 24

Thinking programs – Breaking down complex tasks

Example 2:

Grad student’s Average Day
possible activities:

eat, sleep, work, do stuff, . . .

15 / 24

Thinking programs – Breaking down complex tasks

get up

do morning stuff

go to school

work

lunch

work

dinner

work

go home

sleep

Listing 1: make_my_day

possible implementation
1 % make_my_day .m

%−−−−−−−−−−−−−−
3 % program t h a t shows how much fun

% l i v e as a grad student i s :)
5

getUp ;
7 eat (’ b reak fas t ’) ;

walk (’ school ’) ;
9 work ;

eat (’ lunch ’) ;
11 work () ;

eat (’ d inner ’) ;
13 work () ;

walk (’home ’) ;
15 haveLi fe ;

s leep ;

16 / 24

Thinking programs – Breaking down complex tasks

get up

do morning stuff

go to school

work

lunch

work

dinner

work

go home

sleep

Listing 1: make_my_day

possible implementation
% make_my_day .m

2 %−−−−−−−−−−−−−−
% program t h a t shows how much fun

4 % l i v e as a grad student i s :)

6 getUp ;
eat (’ b reak fas t ’) ;

8 walk (’ school ’) ;
work ;

10 eat (’ lunch ’) ;
work () ;

12 eat (’ d inner ’) ;
work () ;

14 walk (’home ’) ;
haveLi fe ;

16 sleep ;

16 / 24

Outline

1 Overview and Philosophies

2 Thinking programs

3 Building programs

4 Summary

17 / 24

Building programs – One black box at a time

Strategies to implement a program:

Top down
Same as the examples above:

start with the big picture
identify reasonable
subtasks
try to divide things to a level
of managable complexity
(atoms)
implement atoms
implement main routine
(flow control)

Bottom up
problems accumulate
implement an atom at the
time
at some point you figure out
that things could go
together
revise main routine
constantly
add necessary subroutines

18 / 24

Building programs – One black box at a time

Strategies to implement a program:

Top down
Same as the examples above:

start with the big picture
identify reasonable
subtasks
try to divide things to a level
of managable complexity
(atoms)
implement atoms
implement main routine
(flow control)

Bottom up
problems accumulate
implement an atom at the
time
at some point you figure out
that things could go
together
revise main routine
constantly
add necessary subroutines

18 / 24

Building programs – One black box at a time

Bottom line
Try building tools that solve a set of similar problems in a generic
way. Use Parameters!
Build and test each atom individually, test all scenarios (and more)
with synthetic input.
Treat atoms as black boxes that implement desired functionality.
Don’t care about them once they’re working

19 / 24

Building programs – One black box at a time

Keys to good programs
Modularity: split problem in manageable tasks, implement and
test one at a time

Reusability: write functions, avoid redundance, avoid monolithic
code (theoretically one loop would be enough)

Pidd, 2002

Generalize: use variables instead of hard coded values, hand
parameters to functions
Functionality, then efficiency

20 / 24

Building programs – One black box at a time

Keys to good programs
Modularity: split problem in manageable tasks, implement and
test one at a time
Reusability: write functions, avoid redundance, avoid monolithic
code (theoretically one loop would be enough)

Full (composable)
simulation model reuse

Function
reuse

Copy ’n’
paste

Frequency:

Complexity:

low

lowhigh

high

Software com-
ponent reuse

Pidd, 2002

Generalize: use variables instead of hard coded values, hand
parameters to functions
Functionality, then efficiency

20 / 24

Building programs – One black box at a time

Keys to good programs
Modularity: split problem in manageable tasks, implement and
test one at a time
Reusability: write functions, avoid redundance, avoid monolithic
code (theoretically one loop would be enough)

Full (composable)
simulation model reuse

Function
reuse

Copy ’n’
paste

Frequency:

Complexity:

low

lowhigh

high

Software com-
ponent reuse

Pidd, 2002

Generalize: use variables instead of hard coded values, hand
parameters to functions

Functionality, then efficiency

20 / 24

Building programs – One black box at a time

Keys to good programs
Modularity: split problem in manageable tasks, implement and
test one at a time
Reusability: write functions, avoid redundance, avoid monolithic
code (theoretically one loop would be enough)

Full (composable)
simulation model reuse

Function
reuse

Copy ’n’
paste

Frequency:

Complexity:

low

lowhigh

high

Software com-
ponent reuse

Pidd, 2002

Generalize: use variables instead of hard coded values, hand
parameters to functions
Functionality, then efficiency

20 / 24

Building programs

The Control Routine
% make_my_day .m

2 %−−−−−−−−−−−−−−
% program t h a t shows how much fun

4 % l i v e as a grad student i s :)

6 getUp ;
eat (’ b reak fas t ’) ;

8 walk (’ school ’) ;
work ;

10 eat (’ lunch ’) ;
work () ;

12 eat (’ d inner ’) ;
work () ;

14 walk (’home ’) ;
haveLi fe ;

16 sleep ;

Using Parameters
% eat .m

2 %−−−−−−−−−−−−−−
function eat (what)

4 disp (spr in t f (’yummy . . . %s ’ , what)) ;
pause (2) ;

6 end

21 / 24

Outline

1 Overview and Philosophies

2 Thinking programs

3 Building programs

4 Summary

22 / 24

Summary – Take home messages

Thinking . . .
Think modular
Think in general cases
Think non-redundant
Think about reuse
Think about reproducibility

Exercising . . .
Read other peoples’ code . . . critically
The first version is for the trash bin

23 / 24

If all fails . . .

“The Ballmer Peak”

http://www.xkcd.com/323/

24 / 24

	Overview and Philosophies
	Thinking programs
	Building programs
	Summary

