
Beyond the Mouse – A
Short Course on

Programming
2. Fundamental Programming

Principles

Ronni Grapenthin

Geophysical Institute, University of Alaska
Fairbanks

April 17, 2009 “The Uncomfortable Truths Well”,
http://xkcd.com/568 (April 13, 2009)

1 / 25

Outline

1 Solutions to Exercises

2 How does programming work?

3 Variables and Datatypes (1)

4 Control Flow

5 Good Practice

2 / 25

Outline

1 Solutions to Exercises

2 How does programming work?

3 Variables and Datatypes (1)

4 Control Flow

5 Good Practice

3 / 25

Exercise #0

. . .
nothing . . . :(

4 / 25

Exercise #1

N = 1

Rethink!
NO!

I guess

Need to
program?

START

Attend seminar N

Interesting?
Useful?

Yes.
Go through examples

Yes.Interesting?
Useful?

Go through exercises
Send email with N and

comments to Ronni

NO!

NO!

Have a l i fe!N = N+1

N < 6?

Yes.

NO! Send email with
comments to Ronni

N=1: "Thinking Programs"

N=2: "Fundamental Principles"

N=3: "Unix Tools"

N=4: "General Matlab"

N=5: "Matlab I/O"

N=6: "Matlab and Antelope"Exercise #1:
What are possib le problems wi th

this program?

Listing 1: Seminar flow (fixed)

5 / 25

Exercise #1

N = 1

Rethink!
NO!

I guess

Need to
program?

START

Attend seminar N

Interesting?
Useful?

Yes.
Go through examples

Yes.Interesting?
Useful?

Go through exercises
Send email with N and

comments to Ronni

NO!

NO!

Have a l i fe!N = N+1

N < 6?

Yes.

NO! Send email with
comments to Ronni

N=1: "Thinking Programs"

N=2: "Fundamental Principles"

N=3: "Unix Tools"

N=4: "General Matlab"

N=5: "Matlab I/O"

N=6: "Matlab and Antelope"

TIMING??

Listing 1: Seminar flow (fixed)

5 / 25

Exercise #1

N = 1

Rethink!
NO!

I guess

Need to
program?

START

Attend seminar N

Interesting?
Useful?

Yes.
Go through examples

Yes.Interesting?
Useful?

Go through exercises
Send email with N and

comments to Ronni

NO!

NO!

Have a l i fe!N = N+1

N < 7?

Yes.

NO! Send email with
comments to Ronni

N=1: "Thinking Programs"

N=2: "Fundamental Principles"

N=3: "Unix Tools"

N=4: "General Matlab"

N=5: "Matlab I/O"

N=6: "Matlab and Antelope"

TIMING??

Listing 1: Seminar flow (fixed)

5 / 25

Exercise #1

N = 1

Rethink!
NO!

I guess

Need to
program?

START

Attend seminar N

Interesting?
Useful?

Yes.
Go through examples

Yes.Interesting?
Useful?

Go through exercises
Send email with N and

comments to Ronni

NO!

NO!

Have a l i fe!N = N+1

N < 7?

Yes.

NO! Send email with
comments to Ronni

N=1 (4/15): "Thinking Programs"

N=2 (4/17): "Fundamental Principles"

N=3 (4/22): "Unix Tools"

N=4 (4/24): "General Matlab"

N=5 (4/29): "Matlab I/O"

N=6 (5/1) : "Matlab and Antelope"

TIMING??

Listing 1: Seminar flow (fixed)

5 / 25

Exercise #1

N = 1

Rethink!
NO!

I guess

Need to
program?

START

Attend seminar N

Interesting?
Useful?

Yes.
Go through examples

Yes.Interesting?
Useful?

Go through exercises
Send email with N and

comments to Ronni

NO!

NO!

while ’ today’ not
date(N) ...

Have a l i fe!

N = N+1

N < 7?
Yes. NO! Send email with

comments to Ronni

N=1 date=4/15: "Thinking Programs"

N=2 date=4/17: "Fundamental Principles"

N=3 date=4/22: "Unix Tools"

N=4 date=4/24: "General Matlab"

N=5 date=4/29: "Matlab I/O"

N=6 date=5/1 : "Matlab and Antelope"

Listing 1: Seminar flow (fixed)

5 / 25

Exercise #2

so?

6 / 25

Outline

1 Solutions to Exercises

2 How does programming work?

3 Variables and Datatypes (1)

4 Control Flow

5 Good Practice

7 / 25

How does programming work?

Well, fist we should be clear what a programming language is . . .

8 / 25

Alright, what’s a programming language then?

Definitions (broad sense)
A programming language is an unambiguous artificial language that
is made up of a set of symbols (vocabulary) and grammatical rules
(syntax) to instruct a machine. A program is a set of instructions in
one or multiple programming languages that specifies the behavior of
a machine. Compilation or interpretation is the verification of a
program and its translation into in the machine readable instructions of
a specific platform.

Two broad families can be identified:

1 Interpreted languages
An interpreter program is necessary to take in commands, check
syntax and translate to machine language at runtime (e.g., Matlab)

2 Compiled languages
Programs are translated and saved in machine language. At
runtime no additional program is necessary (e.g., C/C++).

9 / 25

Alright, what’s a programming language then?

Definitions (broad sense)
A programming language is an unambiguous artificial language that
is made up of a set of symbols (vocabulary) and grammatical rules
(syntax) to instruct a machine. A program is a set of instructions in
one or multiple programming languages that specifies the behavior of
a machine. Compilation or interpretation is the verification of a
program and its translation into in the machine readable instructions of
a specific platform.

Two broad families can be identified:
1 Interpreted languages

An interpreter program is necessary to take in commands, check
syntax and translate to machine language at runtime (e.g., Matlab)

2 Compiled languages
Programs are translated and saved in machine language. At
runtime no additional program is necessary (e.g., C/C++).

9 / 25

Alright, what’s a programming language then?

Definitions (broad sense)
A programming language is an unambiguous artificial language that
is made up of a set of symbols (vocabulary) and grammatical rules
(syntax) to instruct a machine. A program is a set of instructions in
one or multiple programming languages that specifies the behavior of
a machine. Compilation or interpretation is the verification of a
program and its translation into in the machine readable instructions of
a specific platform.

Two broad families can be identified:
1 Interpreted languages

An interpreter program is necessary to take in commands, check
syntax and translate to machine language at runtime (e.g., Matlab)

2 Compiled languages
Programs are translated and saved in machine language. At
runtime no additional program is necessary (e.g., C/C++).

9 / 25

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

10 / 25

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

10 / 25

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

10 / 25

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

10 / 25

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)

5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

10 / 25

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)

6 if errors, fix them and go back to (3)

10 / 25

Now, how does programming work?

1 open text editor (vi, notepad, . . . , not MS Word!)

http://www.xkcd.com/378/

2 translate your (mental) flowchart into a set of instructions
according to the programming language

3 test your program for syntactical correctness (ask
interpreter/compiler)

4 if errors, fix them and go back to (3)
5 test your program for semantical errors (the fun part!)
6 if errors, fix them and go back to (3)

10 / 25

Don’t even think that’s as simple as it sounds . . .

‘Hello World’ in Matlab
1 >> dsp (halo o r l d

??? dsp (halo o r l d
3 |

E r ro r : Unexpected MATLAB expression .
5

>> dsp (’ halo o r l d
7 ??? dsp (’ halo o r l d

|
9 Er ro r : A MATLAB s t r i n g constant i s not terminated p rope r l y .

11 >> dsp (’ halo o r l d ’
??? dsp (’ halo o r l d ’

13 |
E r ro r : Expression or statement i s i n c o r r e c t−−poss ib l y unbalanced (, { , or [.

15
>> dsp (’ halo o r l d ’)

17 ??? Undefined function or method ’ dsp ’ for input arguments o f type ’ char ’ .

19 >> disp (’ halo o r l d ’)
halo o r l d

21
% Semat ica l l y co r rec t , i f you want to say ’ h i ’ to the world :

23 %
>> disp (’ h e l l o wor ld ’)

25 h e l l o wor ld

Listing 2.1: hello_world.log

11 / 25

Outline

1 Solutions to Exercises

2 How does programming work?

3 Variables and Datatypes (1)

4 Control Flow

5 Good Practice

12 / 25

Variables and Data Types (1)

Definition – Variable (basic)
User defined keyword that is linked to a value stored in computer’s
memory (runtime). Assigning a value:
Matlab: myNewVar = 10; TC-Shell (differs) set myNewVar = 10;
Access to the values by de-referencing:
Matlab: myNewVar; TC-Shell (differs) $myNewVar

Defintion – Data Type (basic)
Tells the machine (well, really the interpreter/compiler) what kind of
data is to be expected in a memory slot a certain variable points to.
This is necessary since different data types occupy differently sized
chunks of memory. Scripting languages such as Matlab and Perl are
weakly typed and do necessary type conversions themselves if
possible. Basic data types are: logic (boolean), character (char),
string, integer, floating point (double precision).

thanks to wikipedia for some help right here.13 / 25

Variables and Data Types (1)

Definition – Variable (basic)
User defined keyword that is linked to a value stored in computer’s
memory (runtime). Assigning a value:
Matlab: myNewVar = 10; TC-Shell (differs) set myNewVar = 10;
Access to the values by de-referencing:
Matlab: myNewVar; TC-Shell (differs) $myNewVar

Defintion – Data Type (basic)
Tells the machine (well, really the interpreter/compiler) what kind of
data is to be expected in a memory slot a certain variable points to.
This is necessary since different data types occupy differently sized
chunks of memory. Scripting languages such as Matlab and Perl are
weakly typed and do necessary type conversions themselves if
possible. Basic data types are: logic (boolean), character (char),
string, integer, floating point (double precision).

thanks to wikipedia for some help right here.13 / 25

Variables and Data Types (2)

Vectors and Matrices – Arrays
Array variables are lists, vectors, matrices of data. An array variable is
linked to a chunk of memory that contains a series of values (usually
same type) and can be dereferenced using an index number.
Depending on the programming language the first value can sit at
index ’0’ or ’1’. Arrays can be 1 to n dimensional (depending on the
language it’s either more or less fun to keep track of that). Matlab
treats everything as a matrix. Shells allow only vectors.

Example
index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
sting: h e l l o w o r l d ! ! !
vector: 12 23.3 23.3 nan nan 1 42 42.1 23 5 nan nan 0 0 0

More Complex things
Exercise: Read Matlab help on cell array and struct (type:
>help cell ...

14 / 25

Variables and Data Types (2)

Vectors and Matrices – Arrays
Array variables are lists, vectors, matrices of data. An array variable is
linked to a chunk of memory that contains a series of values (usually
same type) and can be dereferenced using an index number.
Depending on the programming language the first value can sit at
index ’0’ or ’1’. Arrays can be 1 to n dimensional (depending on the
language it’s either more or less fun to keep track of that). Matlab
treats everything as a matrix. Shells allow only vectors.

Example
index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
sting: h e l l o w o r l d ! ! !
vector: 12 23.3 23.3 nan nan 1 42 42.1 23 5 nan nan 0 0 0

More Complex things
Exercise: Read Matlab help on cell array and struct (type:
>help cell ...

14 / 25

Variables and Data Types (2)

Vectors and Matrices – Arrays
Array variables are lists, vectors, matrices of data. An array variable is
linked to a chunk of memory that contains a series of values (usually
same type) and can be dereferenced using an index number.
Depending on the programming language the first value can sit at
index ’0’ or ’1’. Arrays can be 1 to n dimensional (depending on the
language it’s either more or less fun to keep track of that). Matlab
treats everything as a matrix. Shells allow only vectors.

Example
index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
sting: h e l l o w o r l d ! ! !
vector: 12 23.3 23.3 nan nan 1 42 42.1 23 5 nan nan 0 0 0

More Complex things
Exercise: Read Matlab help on cell array and struct (type:
>help cell ...

14 / 25

Outline

1 Solutions to Exercises

2 How does programming work?

3 Variables and Datatypes (1)

4 Control Flow

5 Good Practice

15 / 25

Control Flow – Redirecting the stream

16 / 25

Control Flow – Redirecting the stream

condit ion
truefalse

doSomething()

n = 1. .x

doXtimes(n)

16 / 25

Control Flow – Redirecting the stream

condit ion
truefalse

doSomething()

n = 1. .x

doXtimes(n)

i f statement

16 / 25

Control Flow – Redirecting the stream

condit ion
truefalse

doSomething()

n = 1. .x

doXtimes(n)

conditon loop

i f statement

16 / 25

Control Flow – Redirecting the stream

condit ion
truefalse

doSomething()

n = 1. .x

doXtimes(n)

conditon loop

i f statement

count loop

16 / 25

Control Flow – Redirecting the stream

Flow control turns batch processing into programming:
(high level) programming languages allow different behavior
based on conditions you define – flow control
A condition can be true (1) or false (0).
You test a condition using the operators: <, <=, >, >=, ==,
!= (find equiv. in each respective language)
Function often give numeric return values as answer to a test. In
Matlab strcmp(’compare’, ’strings’) will return false.

17 / 25

Logic 101

Use logic to connect multiple conditions and test for certain cases:

‘NOT’ (‘˜’, ’!’):

a !a
0 1
1 0

‘AND’ (‘&&’):

a b a && b
0 0 0
0 1 0
1 0 0
1 1 1

‘OR’ (‘||’):

a b a || b
0 0 0
0 1 1
1 0 1
1 1 1

Examples

‘Friday Beer’: not younger than 21 and it must be Friday. Beer
today?
‘Game of life’: heart beat or self perception. Still alive?

18 / 25

Logic 101

Use logic to connect multiple conditions and test for certain cases:

‘NOT’ (‘˜’, ’!’):

a !a
0 1
1 0

‘AND’ (‘&&’):

a b a && b
0 0 0
0 1 0
1 0 0
1 1 1

‘OR’ (‘||’):

a b a || b
0 0 0
0 1 1
1 0 1
1 1 1

Examples

‘Friday Beer’: not younger than 21 and it must be Friday. Beer
today?
‘Game of life’: heart beat or self perception. Still alive?

18 / 25

Logic 101

Use logic to connect multiple conditions and test for certain cases:

‘NOT’ (‘˜’, ’!’):

a !a
0 1
1 0

‘AND’ (‘&&’):

a b a && b
0 0 0
0 1 0
1 0 0
1 1 1

‘OR’ (‘||’):

a b a || b
0 0 0
0 1 1
1 0 1
1 1 1

Examples

‘Friday Beer’: not younger than 21 and it must be Friday. Beer
today?
‘Game of life’: heart beat or self perception. Still alive?

18 / 25

Logic 101

Use logic to connect multiple conditions and test for certain cases:

‘NOT’ (‘˜’, ’!’):

a !a
0 1
1 0

‘AND’ (‘&&’):

a b a && b
0 0 0
0 1 0
1 0 0
1 1 1

‘OR’ (‘||’):

a b a || b
0 0 0
0 1 1
1 0 1
1 1 1

Examples

‘Friday Beer’: not younger than 21 and it must be Friday. Beer
today?
‘Game of life’: heart beat or self perception. Still alive?

18 / 25

Logic 101

Use logic to connect multiple conditions and test for certain cases:

‘NOT’ (‘˜’, ’!’):

a !a
0 1
1 0

‘AND’ (‘&&’):

a b a && b
0 0 0
0 1 0
1 0 0
1 1 1

‘OR’ (‘||’):

a b a || b
0 0 0
0 1 1
1 0 1
1 1 1

Examples
‘Friday Beer’: not younger than 21 and it must be Friday. Beer
today?

‘Game of life’: heart beat or self perception. Still alive?

18 / 25

Logic 101

Use logic to connect multiple conditions and test for certain cases:

‘NOT’ (‘˜’, ’!’):

a !a
0 1
1 0

‘AND’ (‘&&’):

a b a && b
0 0 0
0 1 0
1 0 0
1 1 1

‘OR’ (‘||’):

a b a || b
0 0 0
0 1 1
1 0 1
1 1 1

Examples
‘Friday Beer’: not younger than 21 and it must be Friday. Beer
today?
‘Game of life’: heart beat or self perception. Still alive?

18 / 25

Control flow (0) – statements and such

We need a little bit of a formal definition for the following slides. Bear
with me

Formal language definitions
<block > : : = { <statement l i s t > } .

2
<statement l i s t > : : =

4 <statement >
| <statement l i s t > <statement >.

6
<statement > : : =

8 <block >
| <assignment statement >

10 | < i f statement >
| < for loop >

12 | <while loop >
| <do statement >

14 | . . .

Listing 2.1: bnf.txt

19 / 25

Control flow (1) – if - then - else

Formal

< i f statement > : : = i f (< cond i t i on >) <statement > [e lse <statement >] .

Matlab

% i f (CONDITION) STATEMENT
% [e l s e i f STATEMENT]
% [e lse STATEMENT]
% end .
%
% EXAMPLE: What are we gonna
% do today?
%

day=weekday (now) ;

i f (day == 6)
disp (’PUB! ’)

e l s e i f (day == 1 | | day == 7)
disp (’ s leep ’)

else
disp (’ duh . ’)

end

C-Shell

! / b in / tcsh
i f (<cond i t i on >) then <statement >
[e lse <statement >]
end i f
#
Example : What are we gonna do today?

set day = ‘ date | awk ’ { pr in t $1 } ’ ‘

i f ($day == ’ F r i ’) then
echo ’PUB! ’

else
i f ($day == ’ Sat ’ | | \

$day == ’Sun ’) then
echo ’ s leep . ’

else
echo ’ duh . ’

endif
endif

20 / 25

Control flow (1) – if - then - else

Formal

< i f statement > : : = i f (< cond i t i on >) <statement > [e lse <statement >] .

Matlab

% i f (CONDITION) STATEMENT
% [e l s e i f STATEMENT]
% [e lse STATEMENT]
% end .
%
% EXAMPLE: What are we gonna
% do today?
%

day=weekday (now) ;

i f (day == 6)
disp (’PUB! ’)

e l s e i f (day == 1 | | day == 7)
disp (’ s leep ’)

else
disp (’ duh . ’)

end

C-Shell

! / b in / tcsh
i f (<cond i t i on >) then <statement >
[e lse <statement >]
end i f
#
Example : What are we gonna do today?

set day = ‘ date | awk ’ { pr in t $1 } ’ ‘

i f ($day == ’ F r i ’) then
echo ’PUB! ’

else
i f ($day == ’ Sat ’ | | \

$day == ’Sun ’) then
echo ’ s leep . ’

else
echo ’ duh . ’

endif
endif

20 / 25

Control flow (1) – if - then - else

Formal

< i f statement > : : = i f (< cond i t i on >) <statement > [e lse <statement >] .

Matlab

% i f (CONDITION) STATEMENT
% [e l s e i f STATEMENT]
% [e lse STATEMENT]
% end .
%
% EXAMPLE: What are we gonna
% do today?
%

day=weekday (now) ;

i f (day == 6)
disp (’PUB! ’)

e l s e i f (day == 1 | | day == 7)
disp (’ s leep ’)

else
disp (’ duh . ’)

end

C-Shell

! / b in / tcsh
i f (<cond i t i on >) then <statement >
[e lse <statement >]
end i f
#
Example : What are we gonna do today?

set day = ‘ date | awk ’ { pr in t $1 } ’ ‘

i f ($day == ’ F r i ’) then
echo ’PUB! ’

else
i f ($day == ’ Sat ’ | | \

$day == ’Sun ’) then
echo ’ s leep . ’

else
echo ’ duh . ’

endif
endif

20 / 25

Control flow (2) – condition controlled loop: while

Formal

<whi le loop > : : = wh i le (< cond i t i on >) <block >.

Matlab

% whi le (CONDITION)
% STATEMENT
% end .
%
% EXAMPLE: T e l l me when a new minute s t a r t s
%
clc ; %c le a r screen
c=clock ; %get t ime vec to r

% 6 th element o f c i s seconds
while (c (6) < 59.9)

c=clock ;
end
disp (’ s t a r t new minute o f your l i f e ’) ;

C-Shell

! / b in / tcsh
whi le (<cond i t i on >) <block >
#
Example : T e l l me when a new minute s t a r t s

f i g u r e out ac tua l second value . . .
set sec = ‘ date | \

awk ’ { s p l i t ($4 , x , " : ") ; pr in t x [3] } ’ ‘

#do t h a t u n t i l we ’ re s t a r t i n g a new minute
while ($sec < 59)

set sec = ‘ date | \
awk ’ { s p l i t ($4 , x , " : ") ; pr in t x [3] } ’ ‘

echo $sec
end

echo ’ s t a r t new minute o f your l i f e ’ ;

21 / 25

Control flow (2) – condition controlled loop: while

Formal

<whi le loop > : : = wh i le (< cond i t i on >) <block >.

Matlab

% whi le (CONDITION)
% STATEMENT
% end .
%
% EXAMPLE: T e l l me when a new minute s t a r t s
%
clc ; %c lea r screen
c=clock ; %get t ime vec to r

% 6 th element o f c i s seconds
while (c (6) < 59.9)

c=clock ;
end
disp (’ s t a r t new minute o f your l i f e ’) ;

C-Shell

! / b in / tcsh
whi le (<cond i t i on >) <block >
#
Example : T e l l me when a new minute s t a r t s

f i g u r e out ac tua l second value . . .
set sec = ‘ date | \

awk ’ { s p l i t ($4 , x , " : ") ; pr in t x [3] } ’ ‘

#do t h a t u n t i l we ’ re s t a r t i n g a new minute
while ($sec < 59)

set sec = ‘ date | \
awk ’ { s p l i t ($4 , x , " : ") ; pr in t x [3] } ’ ‘

echo $sec
end

echo ’ s t a r t new minute o f your l i f e ’ ;

21 / 25

Control flow (2) – condition controlled loop: while

Formal

<whi le loop > : : = wh i le (< cond i t i on >) <block >.

Matlab

% whi le (CONDITION)
% STATEMENT
% end .
%
% EXAMPLE: T e l l me when a new minute s t a r t s
%
clc ; %c lea r screen
c=clock ; %get t ime vec to r

% 6 th element o f c i s seconds
while (c (6) < 59.9)

c=clock ;
end
disp (’ s t a r t new minute o f your l i f e ’) ;

C-Shell

! / b in / tcsh
whi le (<cond i t i on >) <block >
#
Example : T e l l me when a new minute s t a r t s

f i g u r e out ac tua l second value . . .
set sec = ‘ date | \

awk ’ { s p l i t ($4 , x , " : ") ; pr in t x [3] } ’ ‘

#do t h a t u n t i l we ’ re s t a r t i n g a new minute
while ($sec < 59)

set sec = ‘ date | \
awk ’ { s p l i t ($4 , x , " : ") ; pr in t x [3] } ’ ‘

echo $sec
end

echo ’ s t a r t new minute o f your l i f e ’ ;

21 / 25

Control flow (3) – count controlled loop: for

Formal

< f o r loop > : : = f o r (< assignment >; <cond i t i on >; <assignment >) <block >.

Matlab

% f o r v a r i a b l e = expression
% STATEMENT
% end .
%
% EXAMPLE: count from 1 to 10
%
clc ; %c le a r screen
for n=1:10

disp (spr in t f (’ n=%d ’ , n)) ;
end
disp (’ done . ’) ;

C-Shell

! / b in / tcsh
foreach v a r i a b l e (< l i s t >) <block >
#
Example : l i s t f i l e s i n cu r ren t
d i r e c t o r y (yeah , I know) .

foreach x (‘ l s . / ‘)
echo $x

end

22 / 25

Control flow (3) – count controlled loop: for

Formal

< f o r loop > : : = f o r (< assignment >; <cond i t i on >; <assignment >) <block >.

Matlab

% f o r v a r i a b l e = expression
% STATEMENT
% end .
%
% EXAMPLE: count from 1 to 10
%
clc ; %c lea r screen
for n=1:10

disp (spr in t f (’ n=%d ’ , n)) ;
end
disp (’ done . ’) ;

C-Shell

! / b in / tcsh
foreach v a r i a b l e (< l i s t >) <block >
#
Example : l i s t f i l e s i n cu r ren t
d i r e c t o r y (yeah , I know) .

foreach x (‘ l s . / ‘)
echo $x

end

22 / 25

Control flow (3) – count controlled loop: for

Formal

< f o r loop > : : = f o r (< assignment >; <cond i t i on >; <assignment >) <block >.

Matlab

% f o r v a r i a b l e = expression
% STATEMENT
% end .
%
% EXAMPLE: count from 1 to 10
%
clc ; %c lea r screen
for n=1:10

disp (spr in t f (’ n=%d ’ , n)) ;
end
disp (’ done . ’) ;

C-Shell

! / b in / tcsh
foreach v a r i a b l e (< l i s t >) <block >
#
Example : l i s t f i l e s i n cu r ren t
d i r e c t o r y (yeah , I know) .

foreach x (‘ l s . / ‘)
echo $x

end

22 / 25

Don’t you ever dare to goto!

“GOTO”, http://xkcd.com/292

23 / 25

Outline

1 Solutions to Exercises

2 How does programming work?

3 Variables and Datatypes (1)

4 Control Flow

5 Good Practice

24 / 25

Good Practice

How to make your code readable (language independent)
use indentations to structure your code (align comments etc)
use meaningful variable and function names (sec instead of i
and listFiles() instead of lfls())
decide for one formatting and naming scheme and stick to it; no
matter which one it is.
comment your code
do not over comment your code!
selfstudy:
http://www.google.com/search?hl=en&q=good+programming+style&btnG=Search

25 / 25

Good Practice

How to make your code readable (language independent)
use indentations to structure your code (align comments etc)
use meaningful variable and function names (sec instead of i
and listFiles() instead of lfls())
decide for one formatting and naming scheme and stick to it; no
matter which one it is.
comment your code
do not over comment your code!
selfstudy:
http://www.google.com/search?hl=en&q=good+programming+style&btnG=Search

25 / 25

	Solutions to Exercises
	How does programming work?
	Variables and Datatypes (1)
	Control Flow
	Good Practice

