General MATLAB

Bending MATLAB
to your will

€=

Beyond The Mouse
April 24, 2009
Celso Reyes

from http://www.classicmanga.com/20thcenturyboys/images/spoon-bending.jpg April 23, 2009

Outline

@ Answer questions from

HEY. HEY! STOP
handout RETRACTING MY (D!

@ Working from the |
command line

e Structs
e Cells

@ Writing Scripts in the editor Ji oezyes uas o

. . OVERROWER 1T NOW BUT IT FEELS LIKE AFEW
@ Creating and Juggling GHORT STEPS FROM HERE T0 THE RIBOT WAR

. from http://xkcd.com/251 April 22, 2009
functions

MATLAB BASICS (From Handout)

@ Basic Data types are Double, char, and logical

@ ALL data are Arrays (1x1, 1xn , nxm, nxmxp...)
@ Data Initialization

@ Accessing data: [], ()

@ Indexing tricks: end, colon, and apostrophe

The MATLAB desktop environment

e

I

’7~-:-f?— '

T

—— Ko mndowﬂ"v
o C e Dth\!s. E.:M’Jn:' p. e e C:\Usm\cel;o\Docummts\MATlAB
omm o489 0B
m at's New «w0O* X
and Shortcuts 2] How to Add ﬂﬁo’k;, 7= w O 8 X Command Window ==
- o ipec . e 2 —-.3 456]:
windo L 2> a= 1L =
w !J. >> b = 'He 5> the ‘
P - e = 7/ 15
~ > ~
1, (12,3:45,6] 1 § >> & T &
9 WO rkSpace 26000 36000 3,600
' Hello there ans =
I <1xd cell>
s I B B :epuudohchcordu... <Ix] datasource>
(& 'lsto nw_datasource <1l datasource> 3. 6000
A £) ms_datasource <Ll datasource>
N e ew'ﬂ}!?" dotn:qgvge <h1dms_ou_gg>_ 7
wWin e puepan | >> n o= ('Hi', 5)
4/ i 28 AM =
=[(123; 45 6);
b= 'Hel .
’ - 1 | ' Hl ' [5]
¢ * 27/ 15
: : S>>
4 St ' 5

The MATLAB —nodesktop
environement

@ MUCH Faster on
slow machines

virtll

Programming at the prompt

@ All variables are created in the Workspace.

@ The history window keeps track of each line
you’ve typed and can be used to repeat
commands.

e recently used commands can be repeated through the
use of up-arrows, and down-arrows

@ After the first few letters of a command have
been written, the TAB key may be able to auto
complete your line.

@ OKish for tinkering.

Introducing both structs and cells

@ Astructis a special data type whose data is stored in
fields that are accessible by name

e student.name = ‘joe’

e student.age = 25; mmmm

equivalent to... m Jack’® Yo' ‘Jake’
21 25 30

e student = struct(...
‘name’, ‘joe’ , ‘age’, 25)

@ A cell is a container that can hold disparate types of

data . .
e mycell(1) ={[1 5]} m

15] ‘Ted’ t
e mycell(2,1) = {student} -[- e

{1,:}
- —7 21 student 30
curly braces tell MATLAB to wrap

this value inside a cell. 7

Structs

@ structs may be nested

@ all elements within an array

of structs will have same
fields.

@ field names can be found .‘
with fieldnames() function. ;

@ If values have same size,
you can get all values from
a field at once.

vols = [stereo.volume] vl
* but only 1 level deep! stereo(2).volume.center

Referencing Cells

>

items are put into cells by surrounding the item
with curly braces. e.qg.
mycell = {item,, item,,..., item__ }

each cell element (a cell) can be retrieved with
parenthesis. e.g.
mycell(index) = mycell. ...

each cell value is accessed with curly braces. e.g.
mycell{index} = item.

index

cells can provide multiple arguments to a
function. e.g.
funkyfunction(mycell{:})

Cells vs String Arrays

Character array Cell array
@ Each character is an @ Each entire string is an

@ Each string must be the
same length, but spaces can
be used to pad them to the
same length.

@ Each string can be any length
@ Access string via {whichword}

@ Access each string R' S' g ' —' ‘RSO’
Via (rOW,:) R' E' £ '—' ‘REF’

@ Access columns R' D' W' B' ’RDWB’l
via (:,col) Riefof_| ‘RED’
IEDE

10

The MATLAB Editor

9 Debuyg | WOITE
ContrOIS L - - 3 ; thisfunction (inArg) | . :

function OUCArQ

Q Cell Tools ||
M Llnt Code

.

Unttled?* — — —D £
1 s SCRIPT with cells defired hu tha %% E
2 t detai letaile details Warnings found, click to go to the next message ’
3 a=»0;
5 %4 Next cell
€ a=a+§

b=; Line 6: Terminate statement with semicolon to suppress output ‘

(Unttiea™ x| Untitied2* Line 7: Parse error at ‘;": usage might be invalid MATLAB syntax ‘

x

thisfunction In 3
- n

Scripting with MATLAB

@ Variables used in scripts are created in the
workspace. When the script finishes, these
variables still exist.

@ When the script starts, variables may or may

not already exist.

@ Sections of the script can be
run independently. >
e Each new section starts with %% feunso

Evaluate Evaluate &

e Comments start with % Advance

12

Scripting with MATLAB

N=1;
figure out #files

%% Script grabs mean of each GPS file in a dir

% directory containing preprocessed GPS files
files = dir(‘C:/data/2009/04’);

(Done)

%% Loop through each file, and get its mean
% we’re skipping the first two files ‘cause they

are always V" and “.
for n = 3 : numel(files) Load Nt File
fileName = fullfile(‘C:/data/2009/04/, ... (variable : Z)
files(n).name); %one file per month
load(fileName) %our variable is called “z”
means(n-2) = mean(z); means(N-2) =
end H mean(Z)
N=N+1
13

%% Script grabs mean of each GPS file in a dir

% directory containing preprocessed GPS files

files = dir(@/data/2009/0@

%% Loop through each file, and get its mean

% we’re skipping the first two files ‘cause they
are always ” and “.

fo ﬂ 3: numel(flles)

= fullfile(‘C:/data/2009/04/.)...

files(n).name); %one file per month
load(fileName) %our variable is called “z”

‘means(n-2) = mean(z);

if fileName contains a variable

called “n”, “means”, or
"fiIeName", then strange values

may pop up

What happens if this is run for

January, then for February?

There is no dire
Name? What

Ct correlation
S and the fijle
if a file js mlssmg

Scripting with MATLAB

%% Script grabs mean of each GPS file in a dir

-

% directory containing preprocessed GPS files
CDII‘ = ‘C:/data/2009/04")

'Iekmyan'* mat’)}
means = [];

filenames = {};

%% Loop through each file, and get its mean

LS

A variable was created to hOId|
the directory value. Now it on y
~eeds to be changed in ON€

place.

. Data loaded from file is stored

in a specific variable.

® Output variables are cleared

for n = 1 : numel(files) % one file per month |
fileName = fullfile'myDir files(n).name);

(onsFi n_'@: load(fileName)
means(n) = mean(gpsFileContentes.z);
filenames(n) ~ {fileName};

e

ahead of time

* Extraneous files are excluded
prior to the loop

* Both the mea
kept.

Nand filename are

15

Creating functions

ction outputStuff = function_name (inputStuff)
FUNCTION_ NAME here is the one line summary of the function, used by LOOKFOR
iPNIS is the body of the function where it is explained exactly how to
callit, what it does to the data, and shows an example of how it should be used:.
Allof this shows up when someone types help function_name at the prompt

Because this line isn’t contiguous with the previous comments, it doesn’t appear
hthe help. Instead, it is merely a comment internal to the program

tStuff = inputStuff; %this is where the actual operations start

A function only knows about variables that are created within it, so there
is no need to worry about pre-existing values.

The comments immediately below the function declaration are displayed
when the user asks for HELP for a function

The MATLAB command lookfor searches the first comment line

16

Creating functions

function get_gps_means(myDir)
% get _gps _means calculates means for a gps file
% USAGE: get_gps_means(directory);

% directory containing preprocessed GPS files
files = dir(fullfile (myDir , "*.mat’));

%% Loop through each file, and get its mean
for n =1 : numel(files) % one file per month
fileName = fullfile(myDir, files(n).name);

gpsFileContents = load(fileName)
means(n) = mean(gpsFileContentes.z);
filenames(n) = {fileName};

end

. i

This code has
been moved
from a script to
a function.

Accepts the
directory as an
iInput

17

function [means dates] = get_gps_means(startday, enddg
- %Figure out which files to grab, they're in directories li
1.‘ %"C:/DATA/YYYY/MM" in files called gpsDD.mat

dates = fix(datenum(startday)) : fix (datenum(endday))

]

nDates = numel(dates);

Creatino

| functions ;

[Y M D] = datevec(dates); NOW’ any
means = nan(1,nDates) arbitrary
“ : range of
dates can
be
isfile = {sprintf('C:/DATA/%04d/%02d/gps%02d.mat’,
),M(n),D(n))} processed.
hisfile,'file'))
(thisfile); Both
ieldnames(tmp),'z')) multiple
arguments
and return
values are

present.

18

function [means dates] = get_gps_means(startday, endday)
%Figure out which files to grab, they're in directories like
%"C:/DATA/YYYY/MM" in files called gpsDD.mat

Creating

functions

dates = fix(datenum(startday)) : fix (datenum(endday))

nDates = numel(dates); tT)heksametIOFOCEfSS, .
L : roken into subfunctions
IR 0401, nDates); makes understanding the
main program easier and
for n=1:nDates isolating each behavior.
thisfile = getfilename(date(n)); _ _
means(n) = process(thisfile); function means = process(filename)
end l %Load a file, and return the mean of its Z's
i if (exist(thisfile,'file"))

tmp = load(thisfile);

if any(strcmp(fieldnames(tmp),'z'))
means = mean(tmp.z);

else
disp(['unable to load file ' thisfile]);
means = nan;

end
’nd

| function fn = getfilename(thisdate)
%Figure out which files to grab based on daté
[Y M D] = datevec(thisdate);

thisfile = {sprintf(...

'C:/DATA/%04d/%02d/gps%02d.mat’,...
Y,M,D}

| 19

subfunctions

@ Su bfu nctions are function outStuff = primary(inStuff)

” . . h % The primary function is first function in the
all written In the % M-file. This function can be invoked from

same file as, and %outside the M-file.
are written after outStuff = subfunction (inStuff);

. outStuff = otherSub(outStuff);
the primary

function. function myStuff = subfunction (myStuff)
% visible only to all functions within this file.

Q Subfunctlor)s are nystuff = myStuff * 2:
only accessible
to the functions function outStuff = otherSub(inStuff)

% visible only to all functions within this file.

contal ned Wlth N outStuff = subfunction (inStuff);

that one file. ﬁutStuff=outStuff+ 1; “

20

Variable Scope

@ SCOPE of a variable is the
section of code that has

access to it. hace
— A variable’s scope is usually
limited to the function in : N
which it was created. In Primary Functio
subfunctions, goes out of
scope.

@ LIFE of a variable is the
entire time it exists, from
creation to deletion.

— A variable can be out of
scope, but still exist.

Subfunctlon

!I!!]

21

Variable Scope Exercise

@ Follow this program to 2;
determine scope and
lifetime of each of the

. tion q = weird(n)
variables... RO

q =n +zing(n+1);

S — .—-————————’—'——\.
function s = zing(n)

§=n*2:

N -‘M

22

(Areument lists)

@ Arguments are the inputs to a function.

e Enclosed in parenthesis
e COMma separated

e Number of input arguments can be determined by
using nargin

23

[Return Types]

@ Return Types are the values that a function
passes back to the main program

e Multiple return types are enclosed in square
brackets.

e A program can find out how many variables it was
called with by using nargout

24

VENE

mask is just a variable name, not a specific function

@ Amaskisanarray of N\, | -
logical values that can m|a]SIK = ((’ <=
overlay another array, Ta\se |
allowing you to work
with specific values
within that array

P(mask) == [3;-5;-20;0]

Finding Stuff (indexing)

@ Indexing can be done with 55 nrimes = [1 35 7 9]
either an array of logicals

(the same size as the array >> [isPrime, loc] =

you're trying to get ismember(3,primes)
information from) or an
array of doubles. isPrime 2> true and loc>2
e logical —The index array is a : :
MASK that tells MATLAB >> [isPrime, loc] =
which elements to keep or ismember(primes 3)
throw away. !
e double — each number isPrime 2 [FTFFF]
represents the position
within an array of the | loc 2 [0 100 0]

element of interest. Misprime) > 2 j‘

26

Refining your code - Vectorizing

Vectorizing your code an make it run much faster

W log of numbers from .01 to 10 " B%log of numbers from .01 to 10
x=.01;) . 01-
fork= 1:1001 X— .01..01.10
y(k) = log10(x); y = log10(x);

X=x+.01; |
~end L_m/{ 4

% append ".new” to all files in direct 1% append ".new” to all files in direct™!

files = dir; files = dir;

for n = 1:numel (files)
newfiles(n)=...

{strcat(files(n).name, .new’)}
end LI A
g R N 4

27

newfiles = strcat({files.name},’.new’)

Putting it together: Poker
Planning

@ Startwithaclear 9494 Deal cards Example
vision of what goes

in and what goes % 1. Find out how many

out. players and how many
List the broad steps = cards each.

required to solve
the problem % 2. Create a deck

each broad stepis 96 3 Shuffle deck
a perfect candidate

for a function. % 4. Deal to each player

E. Determine Score J
2

8

Putting it
together:

Poker
Skeleton

@ Use your outline
to create skeletal
functions that
serve as place-
holders for yet-
to-be-created
functions

function poker(nplayers, ncards)

% 1. Find out how # players and # cards each.

% 2. Create a deck

% 3. Shuffle deck

% 4. Deal to each player
% 5. Determine Score

function deck= create_deck()
disp(‘creating a deck!’)
deck =[];

function deck= shuffle_deck(deck)
disp(‘shuffle shuffle’)

function show_cards(cardlist)
disp(‘showing cards’);

function[cards, deck] = deal_cards(ncards, deck)

disp(‘dealing’)
cards = [];

function score= get_score()
disp(‘Score!’);
score = 1;

ool

29

starting game
creating standard deck
shuffle shuffle...

P rog ra m dealing 5 cards

Putting it together: Poker

Player 1:

Ace of Spades

Queen of Diamonds
%%Main function, runs the game 7 of Diamonds
function poker(nplayers, ncards) 8 of Spades
% plays a round of poker with itself 9 of Spades

% N-card stud, no draw
disp('starting game')
9 deck = create_deck();

* High Card : 14

deck = shuffle(deck); dealing 5 cards
- for whichPlayer = 1 : nplayers Player 2:
[player(whichPlayer).cards, deck] = deal_cards(ncards, 10 of Clubs
Er); Queen of Spades

fprintf('"\nPlayer %d:\n',whichPlayer); 5 of Diamonds
sTow_caL(.jsr(]pl)Dllayer(whichPIayer).cards); 2 of Spades
: ZZ?_r(s\évorlg(plaay)/:rli)\/.\;s.ffi()cLePlayer).ca rds); 10 of Hearts

end * Pair!

winner = determine_winner(player);

Winner is player # : 2

30

31

