
Bending MATLAB
to your wil l

Beyond The Mouse
April 24, 2009

Celso Reyes

from http://www.classicmanga.com/20thcenturyboys/images/spoon-bending.jpg April 23, 2009

Answer questions from
handout

Working from the
command line

Structs

Cells

Writing Scripts in the editor

Creating and Juggling
functions

2

from http://xkcd.com/251 April 22, 2009

Basic Data types are Double, char, and logical

ALL data are Arrays (1x1, 1xn , nxm, nxmxp…)

Data Initialization

Accessing data: [], ()

Indexing tricks: end, colon, and apostrophe

3

4

>>

5

All variables are created in the Workspace.

The history window keeps track of each line
you’ve typed and can be used to repeat
commands.

recently used commands can be repeated through the
use of up-arrows, and down-arrows

After the first few letters of a command have
been written, the TAB key may be able to auto
complete your line.

OKish for tinkering.

6

A struct is a special data type whose data is stored in
fields that are accessible by name

student.name = ‘joe’
student.age = 25;

equivalent to...
student = struct(...
‘name’ , ‘joe’ , ’age’ , 25)

A cell is a container that can hold disparate types of
data

mycell(1) = {[1 5]}
mycell(2,1) = {student}

7

student (1) (2) (3)

.name ‘Jack’ ‘Jo’ ‘Jake’

.age 21 25 30

MyCell {:,1} (:,2) {:,3}

{1,:} [1 5] ‘Ted’ true

{2,:} 21 student 30
curly braces tell MATLAB to wrap

this value inside a cell.

structs may be nested

all elements within an array
of structs will have same
fields.

field names can be found
with fieldnames() function.

If values have same size,
you can get all values from
a field at once.
vols = [stereo.volume]
* but only 1 level deep!

8

stereo(2).volume.center

5
4
3
2
1

items are put into cells by surrounding the item
with curly braces. e.g.
mycell = {item1, item2,... , itemmax}
each cell element (a cell) can be retrieved with
parenthesis. e.g.
mycell(index) = mycellindex

each cell value is accessed with curly braces. e.g.
mycell{index} = itemindex

cells can provide multiple arguments to a
function. e.g.
funkyfunction(mycell{:})

9

Character array

Each character is an
element

Each string must be the
same length, but spaces can
be used to pad them to the
same length.

Access each string
via (row,:)

Access columns
via (:,col)

Cell array

Each entire string is an
element

Each string can be any length

Access string via {whichword}

10

R S O _

R E F _

R D W B

R E D _

R D N _

‘RSO’

‘REF’

‘RDWB’

‘RED’

‘RDN’

11

Line 7: Parse error at ‘;’: usage might be invalid MATLAB syntax

Line 6: Terminate statement with semicolon to suppress output

Warnings found, click to go to the next message

No Warnings found

Variables used in scripts are created in the
workspace. When the script finishes, these
variables still exist.

When the script starts, variables may or may
not already exist.

Sections of the script can be
run independently.

Each new section starts with %%

Comments start with %

12

Evaluate Evaluate &
Advance

%% Script grabs mean of each GPS file in a dir

% directory containing preprocessed GPS files
files = dir(‘C:/data/2009/04’);

%% Loop through each file, and get its mean
% we’re skipping the first two files ‘cause they

are always ‘.’ and ‘..’
for n = 3 : numel(files)

fileName = fullfile(‘C:/data/2009/04/’, …
files(n).name); %one file per month
load(fileName) %our variable is called “z”
means(n-2) = mean(z);

end

Load Nth File
(variable : Z)

N <=
#files

means(N-2) =
mean(Z)

Done

N = N + 1

No

Yes

N = 1;
figure out #files

13

%% Script grabs mean of each GPS file in a dir

% directory containing preprocessed GPS files
files = dir(‘C:/data/2009/04’);

%% Loop through each file, and get its mean
% we’re skipping the first two files ‘cause they

are always ‘.’ and ‘..’
for n = 3 : numel(files)

fileName = fullfile(‘C:/data/2009/04/’, …
files(n).name); %one file per month

load(fileName) %our variable is called “z”
means(n-2) = mean(z);

end

Load Nth File
(variable : Z)

N <=
#files

means(N-2) =
mean(Z)

Done

N = N + 1

No

Yes

N = 1;
figure out #files

14

%% Script grabs mean of each GPS file in a dir

% directory containing preprocessed GPS files
myDir = ‘C:/data/2009/04’;
files = dir(fullfile(myDir,’*.mat’);
means = [];
filenames = {};

%% Loop through each file, and get its mean

for n = 1 : numel(files) % one file per month
fileName = fullfile(myDir, files(n).name);
gpsFileContents = load(fileName)
means(n) = mean(gpsFileContentes.z);
filenames(n) = {fileName};

end

15

A function only knows about variables that are created within it, so there
is no need to worry about pre-existing values.
The comments immediately below the function declaration are displayed
when the user asks for HELP for a function
The MATLAB command lookfor searches the first comment line

16

function outputStuff = function_name (inputStuff)
% FUNCTION_NAME here is the one line summary of the function, used by LOOKFOR
% This is the body of the function where it is explained exactly how to
% call it, what it does to the data, and shows an example of how it should be used.
% All of this shows up when someone types help function_name at the prompt

% Because this line isn’t contiguous with the previous comments, it doesn’t appear
% on the help. Instead, it is merely a comment internal to the program

outputStuff = inputStuff; %this is where the actual operations start

This code has
been moved
from a script to
a function.

Accepts the
directory as an
input

17

function get_gps_means(myDir)
% get_gps_means calculates means for a gps file
% USAGE: get_gps_means(directory);

% directory containing preprocessed GPS files
files = dir(fullfile (myDir , ’*.mat’));

%% Loop through each file, and get its mean
for n = 1 : numel(files) % one file per month

fileName = fullfile(myDir, files(n).name);
gpsFileContents = load(fileName)
means(n) = mean(gpsFileContentes.z);
filenames(n) = {fileName};

end

function [means dates] = get_gps_means(startday, endday)
%Figure out which files to grab, they're in directories like
%"C:/DATA/YYYY/MM" in files called gpsDD.mat
dates = fix(datenum(startday)) : fix (datenum(endday))
nDates = numel(dates);
[Y M D] = datevec(dates);
means = nan(1,nDates)

for n = 1 : nDates
thisfile = {sprintf('C:/DATA/%04d/%02d/gps%02d.mat',...

Y(n),M(n),D(n))}
if (exist(thisfile,'file'))

tmp = load(thisfile);
if any(strcmp(fieldnames(tmp),'z'))
means(n) = mean(tmp.z);

else
disp(['unable to load file ' thisfile]);

end
end

end

Now, any
arbitrary
range of
dates can
be
processed.

Both
multiple
arguments
and return
values are
present.

18

The same process,
broken into subfunctions
makes understanding the
main program easier and
isolating each behavior.

19

function [means dates] = get_gps_means(startday, endday)
%Figure out which files to grab, they're in directories like
%"C:/DATA/YYYY/MM" in files called gpsDD.mat

dates = fix(datenum(startday)) : fix (datenum(endday))
nDates = numel(dates);
means = nan(1,nDates);

for n=1:nDates
thisfile = getfilename(date(n));
means(n) = process(thisfile);

end

function means = process(filename)
%Load a file, and return the mean of its Z’s
if (exist(thisfile,'file'))

tmp = load(thisfile);
if any(strcmp(fieldnames(tmp),'z'))

means = mean(tmp.z);
else

disp(['unable to load file ' thisfile]);
means = nan;

end
end

function fn = getfilename(thisdate)
%Figure out which files to grab based on date
[Y M D] = datevec(thisdate);

thisfile = {sprintf(...
'C:/DATA/%04d/%02d/gps%02d.mat‘,...
Y,M,D}

subfunctions are
all written in the
same file as, and
are written after
the primary
function.
Subfunctions are
only accessible
to the functions
contained within
that one file.

20

function outStuff = primary(inStuff)
% The primary function is first function in the
% M-file. This function can be invoked from
% outside the M-file.
outStuff = subfunction (inStuff);
outStuff = otherSub(outStuff);

function myStuff = subfunction (myStuff)
% visible only to all functions within this file.
myStuff = myStuff .* 2;

function outStuff = otherSub(inStuff)
% visible only to all functions within this file.
outStuff = subfunction (inStuff);
outStuff = outStuff + 1;

21

SCOPE of a variable is the
section of code that has
access to it.
– A variable’s scope is usually

limited to the function in
which it was created. In
subfunctions, goes out of
scope.

LIFE of a variable is the
entire time it exists, from
creation to deletion.
– A variable can be out of

scope, but still exist.

22

Follow this program to
determine scope and
lifetime of each of the
variables...

Arguments are the inputs to a function.

Enclosed in parenthesis

comma separated

Number of input arguments can be determined by
using nargin

23

Return Types are the values that a function
passes back to the main program

Multiple return types are enclosed in square
brackets.

A program can find out how many variables it was
called with by using nargout

24

A mask is an array of
logical values that can
overlay another array,
allowing you to work
with specific values
within that array

P(mask) == [3;-5;-20;0]

25

mask is just a variable name, not a specific function

Indexing can be done with
either an array of logicals
(the same size as the array
you’re trying to get
information from) or an
array of doubles.

logical – The index array is a
MASK that tells MATLAB
which elements to keep or
throw away.
double – each number
represents the position
within an array of the
element of interest.

26

>> primes = [1 3 5 7 9]

>> [isPrime, loc] =
ismember(3,primes)

isPrimetrue and loc2

>> [isPrime, loc] =
ismember(primes,3)

isPrime [F T F F F]

loc  [0 1 0 0 0]

find(isPrime)  2

Vectorizing your code an make it run much faster

27

% log of numbers from .01 to 10
x = .01;
for k = 1:1001
y(k) = log10(x);
x = x + .01;

end

% log of numbers from .01 to 10

x = .01:.01:10

y = log10(x);

% append ”.new” to all files in direct
files = dir;
for n = 1:numel (files)
newfiles(n)=...

{strcat(files(n).name, ’.new’)}
end

% append ”.new” to all files in direct

files = dir;

newfiles = strcat({files.name},’.new’)

Start with a clear
vision of what goes
in and what goes
out.

List the broad steps
required to solve
the problem

each broad step is
a perfect candidate
for a function.

28

%% Deal cards Example

% 1. Find out how many
players and how many
cards each.

% 2. Create a deck

% 3. Shuffle deck

% 4. Deal to each player

% 5. Determine Score

Use your outline
to create skeletal
functions that
serve as place-
holders for yet-
to-be-created
functions

29

function poker(nplayers, ncards)
% 1. Find out how # players and # cards each.
% 2. Create a deck
% 3. Shuffle deck
% 4. Deal to each player
% 5. Determine Score

function deck= create_deck()
disp(‘creating a deck!’)
deck = [];

function deck= shuffle_deck(deck)
disp(‘shuffle shuffle’)

function show_cards(cardlist)
disp(‘showing cards’);

function[cards, deck] = deal_cards(ncards, deck)
disp(‘dealing’)
cards = [];

function score= get_score()
disp(‘Score!’);
score = 1;

Fill in the
function details,
testing as you
go

30

starting game

creating standard deck

shuffle shuffle...

dealing 5 cards

Player 1:

Ace of Spades

Queen of Diamonds

7 of Diamonds

8 of Spades

9 of Spades

* High Card : 14

dealing 5 cards

Player 2:

10 of Clubs

Queen of Spades

5 of Diamonds

2 of Spades

10 of Hearts

* Pair!

Winner is player # : 2

%%Main function, runs the game
function poker(nplayers, ncards)
% plays a round of poker with itself
% N-card stud, no draw
disp('starting game')
deck = create_deck();
deck = shuffle(deck);
for whichPlayer = 1 : nplayers
[player(whichPlayer).cards, deck] = deal_cards(ncards,

deck);
fprintf('\nPlayer %d:\n',whichPlayer);
show_cards(player(whichPlayer).cards);
player(whichPlayer).score =

get_score(player(whichPlayer).cards);
end
winner = determine_winner(player);

31

