

4

MATLAB matrices []
MATLAB was originally written for Linear Algebra (i.e.
Matrix Algebra).

MATLAB is short for MATrix LABoratory.

A matrix is a 2-Dimensional Array which obeys special
arithmetic rules.

Matrices are written like:

This is why in MATLAB, arrays are initialized with
square brackets, e.g. :

A = [1 2 3 4; 5 6 7 8 ; 9 10 11 12];

1211109

8765

4321

A
M x N

Rows x Columns
3 x 4

5

Arrays

The fundamental unit of data in MATLAB

Scalar (0D): 1 x 1 array, e.g. s = [5] or s = 5;

Vector (1D):

Row vector: 1 x N array, e.g. x = [1 2 3 4 5] or x = 1:5;

Column vector: M x 1 array, e.g. x = [1; 2; 3; 4; 5] or x = [1 2
3 4 5+’ or x = *1:5+’;

Matrix (2D): M x N, e.g. A = [1 2 3; 4 5 6];

N-dimensional arrays (e.g. 3D: M x N x P)

Empty arrays can exist, too. An example:

A = [],

size(A) is 0x0

7

Initialising arrays with built-in
functions

7

• zeros(m, n) >> b = zeros(2, 3);

• ones(m, n) >> b = ones(2, 3);

• eye(m, n) >> b = eye(2, 3);

• nan(m, n) >> b = nan(2, 3);

• rand(m, n)

• randn(m, n) >> b = randnzeros(2,
These functions all create arrays. Which types should be self

explanatory… ones(2)==[1 1;1 1] and ones(1,2) == [1 1]

(eye is the eyedentity matrix–sound it out to yourself.)

CS 111 8

Array length, size, number of
elements

CS 111 8

>> A = [1 2 3 4; 5 6 7 8; 9 10 11 12];

>> length(A)

4

>> size(A)

3 x 4

>> numel(A)

12

9

Data types
Basic data types of MATLAB variables

Array of numbers: Includes scalars, vectors, matrices…

Each number can be a floating point value (or an integer) with
a real and imaginary part.

>> var = 1 + i ;

Each number could also be a logical (boolean) value: either a
0 or 1 indicating FALSE or TRUE.

Can have more dimensions to the array, e.g. (3D) M x N x P.

string:

>> comment = ‘This is a character string’ ;

A struct is a special data type whose data is stored in
fields that are accessible by name

student.name = ‘joe’
student.age = 25;

equivalent to...
student = struct(...
‘name’ , ‘joe’ , ’age’ , 25)

A cell is a container that can hold disparate types of
data

mycell(1) = {[1 5]}
mycell(2,1) = {student}

11

student (1) (2) (3)

.name ‘Jack’ ‘Jo’ ‘Jake’

.age 21 25 30

MyCell {:,1} (:,2) {:,3}

{1,:} [1 5] ‘Ted’ true

{2,:} 21 student 30
curly braces tell MATLAB to wrap

this value inside a cell.

Character array

Each character is an
element

Each string must be the
same length, but spaces can
be used to pad them to the
same length.

Access each string
via (row,:)

Access columns
via (:,col)

Cell array

Each entire string is an
element

Each string can be any length

Access string via {whichword}

12

R S O _

R E F _

R D W B

R E D _

R D N _

‘RSO’

‘REF’

‘RDWB’

‘RED’

‘RDN’

13

simple output to the screen: disp()

The disp(array) function

>> disp('Hello world')

Hello world

>> disp(5)

5

>> name = ‘Joe Sixpack'; age = 55;

>> disp(['Hello ‘, name, ‘ you are ‘,num2str(age),
‘years old.’])

Hello Joe Sixpack, you are 55 years old.

14

formatted output to the screen (or to
a string variable): sprintf()

sprintf(format, list_of_variables…)

>> name = ‘Joe Sixpack’;

>> age = 55;

>> s = sprintf(‘Hello %s you are %d years old.’, name,
age);

>> disp(s);

Hello Joe Sixpack, you are 55 years old.

15

formatted output

– %d integer

– %f floating point format

– %e exponential format

– %g either floating point or exponential
format, whichever is shorter

– \n new line character

– \t tab character

– %5.2f floating point format with 5 characters where 2 are
after the decimal point.

– %3d an integer that uses 3 characters max

disp(sprintf(‘%5.2f’, pi)); % 3.14

disp(sprintf(‘%5.3f’, pi)); % 3.142

disp(sprintf(‘%d’, pi)); % 3

disp(sprintf(‘%05.2f’, pi)); % 003.14

16

Mathematical Operator Precedence

Hierarchy of operations

• x = 3 * 2 + 6 / 2 – 3^2;

• Processing order of operations is important

– parentheses (starting from the innermost)

– exponentials (from left to right, note 3^2 = 3 squared = 9)

– multiplications and divisions (from left to right)

– additions and subtractions (from left to right)

>> x = 3 * 2 + 6 / 2 – 3^2;

x =

0

Best practice: Clarify with parentheses

>> x = (3 * 2) + (6 / 2) – (3^2);

Now the meaning is obvious.

17

Special Values

• pi: value up to 15 significant digits

• i, j: sqrt(-1)

• Inf: infinity (such as division by 0)

• NaN: Not-a-Number (division of zero by zero)

• clock: current date and time in the form of a 6-element
row vector containing the year, month, day, hour, minute,
and second

• date: current date as a string such as 16-Feb-2004

• eps: epsilon is the smallest difference between two
numbers

• ans: stores the result of an expression

• now: current date and time as a datenum

18

Basic Mathematical Functions

– abs, sign

– log, log10, log2

– exp, power

– sqrt

– sin, cos, tan

– asin, acos, atan

– max, min

– round, floor, ceil, fix

– mod, rem

– mean, median, mode, std, sum, cumsum

– nanmean, nanmedian, nanstd, nansum (if your data
contains NaN values).

Warning: NaN will screw up

some calculations like

“mean”. So use

“nanmean”.

19

Remember these

• help command (or helpwin command) Online help

• doc command Online help

• lookfor keyword Lists related commands

• which Version and location info

• path Shows all directories on your path.

• clear Clears the workspace

• clc Clears the command window

• diary filename Sends output to file

• diary on/off Turns diary on/off

• who, whos Lists content of the workspace

• more on/off Enables/disables paged output

• Ctrl+C Aborts operation

• … Line continuation

• % Comments

• %% Sections (in scripts)

Functions
must be in one
of the
directories
stored in path
for help,
lookfor and
which to be
able to find
them, or to be
able to call
them.

Includes
current
directory.

20

For loop

for myVar = someArray
% put some statements here to do something based on myVar

end

Example 1: A simple countdown

for count = [10: -1 : 0];
disp(sprintf(‘%d…’, count));
pause(1); % pause for 1 second

end
disp(‘we have lift off!’);

10…9…8…7…6…5…4…3…2…1…0…we have lift off!

Example 2: Loop over a cell array of stations

station = {‘RDWH’; ‘RSO’; ‘REF’; RDN’};
for stationNum = 1 : length(stations)

[lat, lon] = loadStationCoordinates(station{stationNum}); % my own function
plotStation(lat, lon, station{stationNum}); % my own function

end

21

While loop

while (someExpressionIsTrue)
% put some statements here to do something

end

Example 1: A simple countdown

count = 10;
while (count > 0)

disp(sprintf(‘%d…’, count));
pause(1); % pause for 1 second
count = count – 1; % subtract 1 from count, else loop will never end!

end
disp(‘we have lift off!’);

10…9…8…7…6…5…4…3…2…1…0…we have lift off!

22

While loop

while (someExpressionIsTrue)
% put some statements here to do something

end

Example 2: Do something every ten minutes until a particular time

waitTime = 600; % seconds between iterations
endTime = datenum(2009, 4, 29, 12, 30, 0);
while (now < endTime)

disp(sprintf(‘Time now is %s. Remember the lecture at %s’, datestr(now, 31), datestr(endTime,
31));
pause(waitTime); % pause for 10 minutes

end
disp(‘Too late!’);

Time now is 2009/04/29 12:18:05. Remember the lecture at 2009/04/29 12:30:00.

Time now is 2009/04/29 12:28:05. Remember the lecture at 2009/04/29 12:30:00.

Too late!

23

If…else…end
if (someExpressionIsTrue)

doThis;
elseif (someOtherExpressionIsTrue)

doThisInstead;
else

doSomethingElseInstead;
end

Example 1:
myBirthday = [1971 07 18];
dv = clock; % returns current date/time like [yyyy mm dd HH MM SS];
if (dv(2) == myBirthday(2) && dv(3) == myBirthday(3))

disp(‘Happy Birthday!’);
end

Example 2:
name = input(‘Enter your name’, ‘s’);
theAList = {‘Bill’; ‘George’; ‘Barack’};
theBList = {‘Al’; ‘Dick’; ‘Joe’};
if (sum(ismember(theAList, name)>0)

fprintf(‘Welcome %s you are on the A List’, name);
elseif (sum(ismember(theBList, name)>0)

fprintf(‘Welcome %s you are on the B List’, name);
else

fprintf(‘You’’re not on the list, you can’’t get in’);
end

24

switch…case…otherwise…end
Example: Simple interactive menu

choice = 0;
while (choice ~= 4)

choice = menu(‘Main menu’, ‘load data’, ‘plot data’, ‘filter data’, ‘exit’);

switch choice
case 1, data = loadData();
case 2, plotData(data);
case 3, filterData(data, filename);
otherwise, disp(‘exiting…’);

end

end

% *** define your loadData, plotData and filterData functions ***

A function only knows about variables that are created within it, so there
is no need to worry about pre-existing values.
The comments immediately below the function declaration are displayed
when the user asks for HELP for a function
The MATLAB command lookfor searches the first comment line

25

function outputStuff = function_name(inputStuff)
% FUNCTION_NAME here is the one line summary of the function, used by LOOKFOR
% This is the body of the function where it is explained exactly how to
% call it, what it does to the data, and shows an example of how it should be used.
% All of this shows up when someone types help function_name at the prompt

% Because this line isn’t contiguous with the previous comments, it doesn’t appear
% on the help. Instead, it is merely a comment internal to the program

outputStuff = inputStuff; %this is where the actual operations start

26

% log of numbers from .01 to 10
x = .01;
for k = 1:1001
y(k) = log10(x);
x = x + .01;

end

% log of numbers from .01 to 10

x = .01:.01:10

y = log10(x);

% append ”.new” to all files in direct
files = dir;
for n = 1:numel (files)
newfiles(n)=...

{strcat(files(n).name, ’.new’)}
end

% append ”.new” to all files in direct

files = dir;

newfiles = strcat({files.name},’.new’)

