
Loading your data
and plott ing it

Beyond The Mouse
April 29, 2009

Glenn Thompson

Review of MATLAB programming

Plotting your data

Saving your plots as image files

Loading your data

Saving your data

2

Just 3 statements to
produce a graph of a sine
wave

I ignore this stuff, because
I want to generate figures
in a way that is scriptable
and repeatable

1. Define the x-vector (can be a matrix)
2. Define the y-vector (can be a matrix)
3. plot(x,y) then generates a figure window, a set of axes, and then plots y versus x

Let’s call s the ‘linestyle’:
By default, plot uses a blue line to connect data points. But if you do:
>> help plot
You’ll see it says:

Various line types, plot symbols and colors may be obtained with

PLOT(X,Y,S) where S is a character string made from one element

from any or all the following 3 columns:

b blue . point - solid

g green o circle : dotted

r red x x-mark -. dashdot

c cyan + plus -- dashed

m magenta * star (none) no line

y yellow s square

k black d diamond

w white v triangle (down)

^ triangle (up)

< triangle (left)

> triangle (right)

p pentagram

h hexagram
plot(x, y) is the same as plot(x, y, ‘b-’)

plot(x,y,'rx')
plot(x,y,'bo')

plot(x, y, 'mv-')

plot y against x using magenta
triangles and connect with a line

plot y against x using red crosses

plot y against x using black circles

xlabel
ylabel
title
grid on

Superscripts: ‘time^2’ => time2

Subscripts: ‘SO_2’ => SO2

Greek characters: \alpha => α

plot(x, y) x linear, y linear
semilogx(x, y) x logarithmic, y linear
semilogy(x, y) x linear, y logarithmic
loglog(x, y) x logarithmic, y logarithmic

Otherwise they work exactly the same.

Screen
Figure1

Axes1 (xlabel, ylabel, title, tick marks, tick labels)
Graph1 (linestyle, legendlabel)
Graph2
…

Axes2
Graph1
…

Figure2
Axes1

Graph1
Graph2

Axes2
Graph1

…

To create a new figure with no axes:
>> figure;

To highlight a figure that is already displayed (if it doesn’t already exist, it will be created):
>> figure(2)

To get all the properties associated with a figure:
>> get(figure(2))

To get a particular property associated with a figure:
>> get(figure(1), ‘Position’)
[420 528 560 420]

To modify a particular property associated with a figure:
>> set(figure(1), ‘Position’, *100 100 560 420+)

This particular example will just move where figure(1) is plotted on the screen.

To get a ‘handle’ for the current active figure window use gcf.
>> get(gcf, ‘Position’)
Will return the screen position of the current active figure window.

New figures are created without a set of axes.

To get a ‘handle’ for the current active set of axes use gca (get current axes).
Example: get a list of all properties associated with current axes
>> get(gca)

>> get(gca, ‘position’)
This will return the screen position of the current active figure window, which by default is:
[0.13 0.11 0.775 0.815]
Format here is [xorigin yorigin xwidth yheight] in fractions of the figure window width.

To modify the position of the current axes within a figure:
>> set(gca, ‘position’, *0.2 0.3 0.6 0.4])
The axes would start 20% of the way across the screen, 30% of the way up,
and be 60% the screen width, and 40% the screen height.

An alternative syntax is just to call the axes command:

>> axes(‘position’, *0.2 0.3 0.6 0.4]);
Either will create a figure if none already exists. Or modify the current set of axes on the current figure.

plot will create a figure and a set of axes at the default position, if there is currently no figure.

Otherwise it will modify the current figure / current axes (this can be changed with ‘hold on’).
So be careful not to overwrite other graphs!

hold on
plot(x,y,'-.')
title
legend
hold off

If your graphs have very
different scales, and you
have just two, try plotyy

Multiple plots on a figure: hold on

hold on “holds on” to graphs already
in the current axes.
Normally they would be erased

subplot(M, N, plotnum) - an M x N arrayof plot axes

close all
figure

Multiple plots on a figure: subplot()

axes(‘position’, *xorigin yorigin xwidth yheight]);
– for finer control than subplot

set(gca, 'XTickLabel', {})
- remove x tick labels

Multiple plots on a figure: axes()

plot(y) - assumes x = [1:length(y)];

plot(x1, y1, x2, y2, …, xn, yn) - a way of plotting multiple graphs without using hold on

plot(x1, y1, s1, x2, y2, s2, …, xn, yn, sn) – as above, but override the default line styles.

Data range
By default, the plot range to show all the data. To override the range of
values on the x and y axes use:

>> set(gca, ‘XLim’, *xmin xmax]); % x-axis only
>> set(gca, ‘YLim’, *ymin ymax]); % y-axis only
>> set(gca, ‘XLim’, *xmin xmax+, ‘YLim’, *ymin ymax]); % both axes

Adding text
To add text at the position xpos, ypos to the current axes use:
>> text(xpos, ypos, ‘some_string’);
Remember you can use the sprintf variable.
>> text(2.3, 5.1, sprintf(‘station %s’,station{stationNum});

set(gca, 'XTick', 1:3:22) set(gca, 'XTickLabel', {50, 'Fred', 'March', 'Tuesday', 75.5, 999, 'foobar'})

datetick(‘x’, dateform)

If your x-vector is a list of dates/times, and it’s in MATLAB’s datenum format, you can use
the datetick() function to label your x-axis conveniently.

It just uses the techniques we’ve seen to change tick marks and tick labels.

dateform can be a number from 0 to 31, or it can be a string like ‘yyyy-mm-dd HH:MM’.

datetick(‘x’) will just try to use what it thinks is the best dateform for your data range.

datenum() returns the number of days since 1st January in the year 0 AD. (Excel dates
and times are similar except Excel uses a different origin. Unix on the other hand uses
seconds since 1970 rather than days since a particular date: nevertheless, conversion is
trivial).

datestr() is used to generate a human-readable string from an array of dates/times in
datenum format.

datenum() returns the day number (and fractional day number) in the calendar starting 1st January
in the year 0 AD.

Excel dates and times are similar except Excel uses the origin 1st January 1900. But you normally ask
Excel to format those cells with a particular date/time format, so you don’t see the raw numbers. In
MATLAB, datenum gives those raw numbers.

To convert from Excel day-numbers to MATLAB datenum format:
mtime = etime + datenum(1900, 1, 1);

Call it like:
datenum(YYYY, MM, DD)
datenum(YYYY, MM, DD, hh, mi, ss)
datenum(‘2009/04/29 18:27:00’)

Remember to use vectorisation:
redoubtEventTimes = {‘2009/03/22 22:38’; ‘2009/03/23 04:11’; ‘2009/03/23 06:23’}
dnum = datenum(redoubtEventTimes);

% result is a 3 x 1 vector of datenums.

datetick(‘x’, 15); % HH:MM

Not very useful to
plot against
datenum – just a
number like
733000

datestr(array, dateform) is used to generate a human-readable string from an array of
dates/times in datenum format.

>> lectureTime = datenum(2009, 4, 29, 12, 30, 0)
733890.5208
>> datestr(lectureTime, 30)
20090427T123000
>> datestr(lectureTime, 31)
2009-04-29 12:30:00
>> datestr(lectureTime, ‘mm/dd/yyyy’)
04/29/2009

% change symbol is depth > 20km
symbol='o';
if (depth>20)

symbol='v';
depth=20;

end

% change symbol size
% according to magnitude

line(x, y);
axis square

• 5 axes
• text(lon, lat, ‘NCT’)
• set(gca, ‘XTick’, *-152.9 -152.8]);
• set(gca, ‘XTickLabel’, {‘-152^oW 54’, …});
• datetick(‘x’);

Other simple 2D plot types

barh(x,y)bar(x,y)

stem(x, y) stairs(x,y)

hist – for plotting histograms

create a histogram of 1000 random data points from a normal distribution

Pie Charts: pie()

x = [2 3 4 5]; pie(x) labels = {'North', 'South', 'East', 'West'};
pie(x, labels)

ex = [0 0 0 1];
pie(x, ex, labels);

PIE(X,EXPLODE) is used to specify slices that should be pulled out from the pie. The vector EXPLODE must be
the same size as X. The slices where EXPLODE is non-zero will be pulled out.

North

South

East

West

>> subplot(2,2,1), plot3(sin(t),cos(t),t); title('plot3')
>> subplot(2,2,2),bar3(rand(5),'stacked'), title('bar3')
>> subplot(2,2,3),hist3(randn(1000,2), [30 2]), title('hist3')
>> subplot(2,2,4),pie3(rand(8,1)), title('pie3')
>> suptitle('Examples of simple 3D plots')

Here we have a 2 x 2 array of subplots. We give a ‘super title’ to them
all with the suptitle() function.
We used the 3D forms of the plot, bar, hist and pie commands.

[c,h] = contour(peaks); clabel(c,h), colorbar

Contour plots: contour()

surf

surf(peaks)

mesh

mesh(peaks) – creates a wireframe

quiver – for plotting vectors

An array can be plotted, using different colours to represent different values.

Example:
>> a = rand(100, 100); % 100 x 100 array of random numbers from 0 to 1
>> imagesc(a);
>> colorbar;

Spectrograms, on the AVO
internal webpage, are
created in this way, except
the array is generated
using the specgram()
command.

There are 15 different
axes on this plot.

>> help map
>> mapdemos

Can write KML:
>> help kmlwrite

Alternative to
Using GMT

print -f1 -dpng myplotfilename.png - dpng means device PNG

print('-f1', '-dpng', '-r200', 'myplotfilename.png') - functional form

-r200 means print with resolution 200 dots per inch (use lower number for small plot)

-f2 means print figure 2

Devices include:

ps, psc, ps2, psc2 - Postscript (c = colour, 2 = level 2)

eps, epsc, eps2, eps2 - Encapsulated Postscript (c = colour, 2 = level 2)

ill - Adobe Illustrator format

jpeg90 - JPEG with quality 90 (can be 01 to 99)

tiff - TIFF

png - PNG

Example:

say you have (numberOfPlots) figures and you want to save all of them as level-2 color encapsulated postscript files with names
like myplot1.eps, myplot2.eps:

for plotNum = 1 : numberOfPlots

print('-depsc2', sprintf('-f%d',plotNum), '-r70', sprintf('myplot%d.eps',plotNum));

end

For plotNum = 2, the print line would evaluate to:

print('-depsc2', '-f2', '-r70', 'myplot2.eps')

You can also capture a figure
window with:
>> print –dmeta
on a Windows system, and paste
it into your document. It does the

same thing as ALT-PRT SC.

Load a raster graphics file into a
numerical array with:
A = imread(‘filename’, ‘format’)

Plot it in the current axes with:
image(A);

Add a colorbar with:
colorbar;

Example:

>> A = imread(‘Sunset.jpg’);
>> size(A)

600 800 3
>> image(A);
>> colorbar

Alter it however you want (add labels, title, text, change position, tick marks).

Text files:

• Files you can read with a text editor, or with the cat, more or less commands at a Unix prompt.

• Might not be able to understand the data they encode.

• Advantage: Human readable.

• We will assume all text files are in ASCII format, which represents English alphabet, the digits 0 – 9 and
other symbols you see on your keyboard. ASCII(65) = ‘A’; ASCII(66) = ‘B’; ASCII(97) = ‘a’;

Binary files:

• Garbage if you try to open them with a text editor, or with the cat, more or less commands.

• Advantage: Compression.

Example:

Take the number 65535. It is equal to 2^16 – 1.

This can be stored in 2 bytes in a binary file. In a text file it needs at least 5 bytes.

Some binary files contain a mixture of text and binary data, e.g. the SEISAN data format. It contains metadata
in plain text, but waveform data in binary format.

MAT files are MATLAB binary files. Only MATLAB can read/write them. They are useful for
storing (workspace) variables, so you can reload them later. Use save and load.

Examples:
>> save foobar.mat
% saves all workspace variables to the file foobar.mat (.mat extension is optional)

>> save foobar.mat x y
% saves only the workspace variables x and y to the file foobar2.mat

>> save foobar.mat sta*
% saves all workspace variables that begin with the letters 'sta' (* is a wildcard)

>> load foobar.mat % loads the file foobar.mat
>> load foobar x % loads only the variable x from foobar.mat

save & load fully support numeric arrays, strings, cell arrays and structs for MAT files.

>> a=load('numeric_array.txt')

a =

0.0799 0.8979 -1.0149
-0.9485 -0.1319 -0.4711
0.4115 -0.1472 0.1370
0.6770 1.0078 -0.2919
0.8577 -2.1237 0.3018

-0.6912 -0.5046 0.3999
0.4494 -1.2706 -0.9300
0.1006 -0.3826 -0.1768
0.8261 0.6487 -2.1321
0.5362 0.8257 1.1454

>> a2=load('numeric_array2.txt')

a2 =

0.0799 0.8979 -1.0149
-0.9485 -0.1319 -0.4711
0.4115 -0.1472 0.1370
0.6770 1.0078 -0.2919
0.8577 -2.1237 0.3018

-0.6912 -0.5046 0.3999
0.4494 -1.2706 -0.9300
0.1006 -0.3826 -0.1768
0.8261 0.6487 -2.1321
0.5362 0.8257 1.1454

But as soon as it no longer has the same
number of numbers on each row, it is no
longer a valid array, and it wont load.

>> a2=load('numeric_array3.txt')
??? Error using ==> load
Number of columns on line 1 of ASCII file numeric_array3.txt
must be the same as previous lines.

s=load('string_array.txt')
??? Error using ==> load
Unknown text on line number 1 of ASCII file string_array.txt
"free".

load() wont work at all with alphabetic characters

Suggested file extension is .dat or .txt.

save -ASCII filename [list of variables]

For numeric variables only
Will turn your strings into ASCII sequences.

load will only work for numerical arrays stored in a file.

Expects same number of columns on each row of an input
file.

Neither of them will work with cell arrays or structs.

Example:
clear all; x = ones(10, 1); y = randn(10, 1);
save foobar.txt –ASCII x y
clear all;
a=load(‘foobar.txt’);
% a will be an array containing x and y

dlmread() is for reading a delimited numeric ASCII text file.

A = dlmread('filename.txt', 'delimiter')

For comma-separated-variables (CSV text files) there is a special command:

A = csvread('filename.txt')

But it just calls:

A = dlmread('filename.txt', ',');

So we'll ignore it.

dlmread() can be used to load numeric_array3.txt, padding each row with zeros as necessary:

>> a3=dlmread('numeric_array3.txt')

a3 =

1 2 3 4
5 6 7 0
8 9 10 11

Although dlmread() gets us around the restriction of having the same number of numbers of each
row, it wont help us to load any non-numeric data. Nor will it work if you have different delimiters
within the same input file.

Our luck improves considerably with importdata()
A = importdata('filename.txt', 'delimiter')

It works without any difficulty for any of the text files we've seen so far:

>> a=importdata('numeric_array3.txt')

a =

1 2 3 4
5 6 7 NaN
8 9 10 11

>> s=importdata('string_array.txt')

s =

'fred'
'bill'
'norm'
'mike'
'dick'
'jane'
'jill'
'bing'
'brad'
'dave'

>>

>> a=importdata('numeric_array2.txt')

a =

0.0799 0.8979 -1.0149
-0.9485 -0.1319 -0.4711
0.4115 -0.1472 0.1370
0.6770 1.0078 -0.2919
0.8577 -2.1237 0.3018

-0.6912 -0.5046 0.3999
0.4494 -1.2706 -0.9300
0.1006 -0.3826 -0.1768
0.8261 0.6487 -2.1321
0.5362 0.8257 1.1454

It even loads string_array.txt
into a cell array!

Now try something more ambitious – each row is a string followed of length 1 to 11
followed by 0 to 4 numbers (reals and integers).

It has created a struct,
s2.data holds the
numeric array,
s2.textdata holds the
string data in a cell array

Non-existent values
replaced with NaN in
numeric array

But importdata finally fails to work as
desired when we are reading in a
simple file made of 3 strings per row.

It loads each row into a single
element of a cell array.

cols = textscan(fid, format) works. Each
column goes into a separate element of a cell
array.

You are responsible for opening and closing
the file though.

fid = fopen(filename, mode)

Is used to open a file.
Mode is:
‘r’ read (default)
‘w’ write (overwrite if file already
exists)
‘a’ append (append to existing file if
it already exists)

The latter are only used for writing data out
to file.

fclose(fid) is used to close the file, after
you’ve read (or written) it.

Script:

% read the file
fid = fopen('mixed_array3.txt');
A = textscan(fid, '%s %d %s %s');
fclose(fid);

% convert data into a struct
person.name = A{1};
person.age = A{2};
person.bday = datenum(A{3}); % convert to a datenum
person.phoneNum = A{4};

% plot the data
figure;
plot(person.bday);
datetick('y'); % let Matlab figure out how to label the y-axis
set(gca, 'XTickLabel', person.name); % change the XtickLabels from1:7 to names

Example to plot birthdays
against name using:
fopen/textscan/fclose
struct
datenum
plot(y)
datetick
change XTickLabel

Line can be any length, any format.

I often use it when each line has fields which appear in fixed positions.

Line can be any length, any format.

I often use it when each line has fields which appear in fixed positions.

fout = fopen(filename, 'w') % write to new file filename (replacing file it if already
exists)
for (r=1:numRows) % loop over all rows

fprintf(fout, '%s\t%12.7f\n', datestr(dnum(r),31), data(r));

end
fclose(fout)

\t = <tab>
\n = <return>
datestr(dnum(r), 31) = print dnum(r) as a datestr using dateform 31
%12.7f= print this real variable as 12 characters with 7 after the decimal point

Output file might be like:

20090423T180000 1234.1234567
20090423T180100 1357.1357911
20090423T180200 1470.1470369

Related functions:
dlmwrite – for delimited fields
(csvwrite for comma delimited fields)

[numeric, txt, raw] = xlsread('myfile.xls'); % will attempt to read all
sheets

[numeric, txt, raw] = xlsread('myfile.xls', 'sheet1'); % read sheet1 only

numeric – a matrix that contains all the numeric columns

txt – a cell array contain all text columns

raw – a cell array contain any columns xlsread could not interpret

Related functions are csvread and dlmread

Reading Excel files

Writing Excel files

xlswrite('myfile.xls', myarray, 'sheet2');

myarray - a numeric array or a cell array

Related functions are csvwrite, dlmwrite

Writing Excel files

xlswrite('myfile.xls', myarray, 'sheet2');

myarray - a numeric array or a cell array

Related functions are csvwrite, dlmwrite

Two real examples:
(1) Grasshopper diet data from Ellen Trainor
(2) Gas data from Taryn Lopez

“The FLYSPEC File

Kary72208_P20.xls, contains:
scan number
year
date
month
hour
min
second
time (HHMMSS)
lat (degree dec min)
(N)
long (deg dec min)
(E)
Don't know the next 3 columns...
Column 17 is SO2 column density
Column 18 is SO2 emission rate

plot… SO2 emission rate vs time.”

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0 500 1000 1500 2000 2500

apply a conversion factor
to all measurements

plot the first six rows in
bold as 6 lines on a plot

compute the area under
each line

do the same for the next 6
bold rows

then the next 5

then the next 5

then the next 7

then the next 4

1) Define the outline

function grasshopperDiets()
% define conversion factors

% load the data
[a, t] = xlsread('grasshopperDiets.xls');
day = a(3, :); % day is in row 3

% define a vector which has the row numbers for the first plot
i = 7:4:23;

% plot these rows & compute area under graph
[area{1}, legendStr] = areas(day, a, i, color, t);

% plot a bar graph of the area
plotarea(area{1}, color, legendStr)

...

% define a vector which has the row numbers for the fifth plot
i = 82:4:102;

% plot these rows & compute area under graph
[area{5}, legendStr] = areas(day, a, i, color, t);

% plot a bar graph of the area
plotarea(area6, color, legendStr)

2) Write the functions

function [area,leg]=areas(day, a, i, color, t)
...

function plotarea(area, color,leg);
...

3) Simplify outline further, and fill in details

function grasshopperDiets()

% define conversion factor
conversionFactor = 1.98 * 12 / (12 + 2 * 16);

% load the data
[a, t] = xlsread('grasshopperDiets.xls');
day = a(3, :); % day is in row 3

% apply conversion factor
a[4:109, :] = a[4:109, :] * conversionFactor;

% set colours to match Excel
color = 'bmycrgk';

% define a vectors in a cell array which have row numbers for each plot
i{1} = 7:4:23;
...
i{5} = 82:4:102;

% loop over each set of rows defined in an element of i{ }
for count = 1:length(i)

% plot these rows & compute area under graph
[area{count}, legendStr] = areas(day, a, i{count}, color, t);

% plot a bar graph of the area
plotarea(area{count}, color, legendStr)

end

if spreadsheet grows, applying this to
more rows is as simple as
adding a new element to i{ } !!

not ideal as we repeat these 3 lines for
each set of rows we want to plot

trapz

Plotting commands:
- plot, semilogx, semilogy, loglog, bar, barh, stem, stairs, hist, pie
- plot3, bar3, pie3, hist3, contour, surf, mesh, quiver, (mapping toolbox)
- image, imagesc
- datetick (datenum, datestr), subplot, hold on, axes

Graphical files:
- imread, print

MAT(LAB binary) files:
-load, save

Numerical ASCII files:
-load, dlmread, importdata, save, dlmwrite

Text files:
- importdata, textscan, fgetl, fscanf, fprintf (fopen/fclose)

Excel files:
- xlsread, xlswrite

Not covered: reading
and writing generic
binary files with:
fopen, fread, fwrite,
fseek, fclose

Next up: Matt Gardine will talk about using the Matlab-Antelope interface

